Zobrazeno 1 - 10
of 22
pro vyhledávání: '"Adriënne M. Mendrik"'
Autor:
Pim Moeskops, Jeroen de Bresser, Hugo J. Kuijf, Adriënne M. Mendrik, Geert Jan Biessels, Josien P.W. Pluim, Ivana Išgum
Publikováno v:
NeuroImage: Clinical, Vol 17, Iss , Pp 251-262 (2018)
Automatic segmentation of brain tissues and white matter hyperintensities of presumed vascular origin (WMH) in MRI of older patients is widely described in the literature. Although brain abnormalities and motion artefacts are common in this age group
Externí odkaz:
https://doaj.org/article/eedf30ac64da464894da99e7c7ad06e3
Publikováno v:
PLoS ONE, Vol 15, Iss 8, p e0237009 (2020)
In a broad range of fields it may be desirable to reuse a supervised classification algorithm and apply it to a new data set. However, generalization of such an algorithm and thus achieving a similar classification performance is only possible when t
Externí odkaz:
https://doaj.org/article/195e8c17af5c4237bd5689ba45eb6eef
Publikováno v:
PLoS ONE, Vol 15, Iss 8, p e0237009 (2020)
PLoS ONE
PLoS ONE, 15(8):e0237009. Public Library of Science
PLoS ONE
PLoS ONE, 15(8):e0237009. Public Library of Science
In a broad range of fields it may be desirable to reuse a supervised classification algorithm and apply it to a new data set. However, generalization of such an algorithm and thus achieving a similar classification performance is only possible when t
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::89322265f97c89d5a13c94891a4135df
http://arxiv.org/abs/2002.12105
http://arxiv.org/abs/2002.12105
Publikováno v:
GECCO
GECCO 2019-Proceedings of the 2019 Genetic and Evolutionary Computation Conference, 753-761
STARTPAGE=753;ENDPAGE=761;TITLE=GECCO 2019-Proceedings of the 2019 Genetic and Evolutionary Computation Conference
GECCO 2019-Proceedings of the 2019 Genetic and Evolutionary Computation Conference, 753-761
STARTPAGE=753;ENDPAGE=761;TITLE=GECCO 2019-Proceedings of the 2019 Genetic and Evolutionary Computation Conference
We introduce a novel surrogate-assisted Genetic Algorithm (GA) for expensive optimization of problems with discrete categorical variables. Specifically, we leverage the strengths of the Gene-pool Optimal Mixing Evolutionary Algorithm (GOMEA), a state
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::55de33ddd6129a166eb055839f12128b
https://ir.cwi.nl/pub/28897
https://ir.cwi.nl/pub/28897
Publikováno v:
2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019).
Generalization of voxelwise classifiers is hampered by differences between MRI-scanners, e.g. different acquisition protocols and field strengths. To address this limitation, we propose a Siamese neural network (MRAI-NET) that extracts acquisition-in
Autor:
Carlos A. Silva, Jorge Oliveira, Sérgio Pereira, Adriano Pinto, José Higino Correia, Adriënne M. Mendrik
Publikováno v:
Repositório Científico de Acesso Aberto de Portugal
Repositório Científico de Acesso Aberto de Portugal (RCAAP)
instacron:RCAAP
Repositório Científico de Acesso Aberto de Portugal (RCAAP)
instacron:RCAAP
Background: The segmentation of brain tissue into cerebrospinal fluid, gray matter, and white matter in magnetic resonance imaging scans is an important procedure to extract regions of interest for quantitative analysis and disease assessment. Manual
Autor:
Max A. Viergever, Manon J. N. L. Benders, Adriënne M. Mendrik, Ivana Išgum, Pim Moeskops, Linda S. de Vries
Publikováno v:
IEEE transactions on medical imaging, 35(5), 1252-1261. Institute of Electrical and Electronics Engineers Inc.
IEEE Transactions on Medical Imaging, 35(5), 1252-1261. Institute of Electrical and Electronics Engineers
IEEE Transactions on Medical Imaging, 35(5), 1252-1261. Institute of Electrical and Electronics Engineers
Automatic segmentation in MR brain images is important for quantitative analysis in large-scale studies with images acquired at all ages. This paper presents a method for the automatic segmentation of MR brain images into a number of tissue classes u
Publikováno v:
eScience
Autor:
Jeroen de Bresser, Ivana Išgum, Adriënne M. Mendrik, Hugo J. Kuijf, Geert Jan Biessels, Pim Moeskops, Josien P. W. Pluim
Publikováno v:
NeuroImage: Clinical, 17, 251-262. Elsevier
NeuroImage. Clinical, 17, 251-262. Elsevier BV
Neuroimage: Clinical [E], 17, 251. Elsevier BV
NeuroImage : Clinical
NeuroImage: Clinical, Vol 17, Iss, Pp 251-262 (2018)
NeuroImage. Clinical, 17, 251-262. Elsevier BV
Neuroimage: Clinical [E], 17, 251. Elsevier BV
NeuroImage : Clinical
NeuroImage: Clinical, Vol 17, Iss, Pp 251-262 (2018)
Automatic segmentation of brain tissues and white matter hyperintensities of presumed vascular origin (WMH) in MRI of older patients is widely described in the literature. Although brain abnormalities and motion artefacts are common in this age group
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::f069f3ddba1f886c11991f3ab2b3e7c9
https://research.tue.nl/nl/publications/137af335-e7f6-41d3-8e28-4a1ad64e2bc4
https://research.tue.nl/nl/publications/137af335-e7f6-41d3-8e28-4a1ad64e2bc4
Autor:
Adriënne M. Mendrik, Max A. Viergever, Geert Jan Biessels, Jeroen de Bresser, Willem H. Bouvy, Rutger Heinen
Publikováno v:
PLoS ONE
PLoS ONE [E], 11(10). Public Library of Science
PLoS ONE, Vol 11, Iss 10, p e0165719 (2016)
PLoS ONE [E], 11(10). Public Library of Science
PLoS ONE, Vol 11, Iss 10, p e0165719 (2016)
INTRODUCTION: Pooling of multicenter brain imaging data is a trend in studies on ageing related brain diseases. This poses challenges to MR-based brain segmentation. The performance across different field strengths of three widely used automated meth