Zobrazeno 1 - 10
of 484
pro vyhledávání: '"Adler, Mark"'
Autor:
Adler, Mark, van Moerbeke, Pierre
Publikováno v:
J. Math. Phys. 64 (2023) Special Collection in Honor of Freeman Dyson
Random tilings of very large domains will typically lead to a solid, a liquid, and a gas phase. In the two-phase case, the solid-liquid boundary (arctic curve) is smooth, possibly with singularities. At the point of tangency of the arctic curve with
Externí odkaz:
http://arxiv.org/abs/2302.11398
Autor:
Carreiro, Patricia, DeCerbo, Paul, Montgomery, Erin E., Anderson, Ingrid M., Scherzer, Daniel J., Arteaga, Grace M., Rozenfeld, Ranna A., Wing, Robyn, Umoren, Rachel A., Wall, Jessica J., McKissic, Devin A., Centers, Gabriela I., Searly, Callie R., Mandt, Maria J., Jackson, Brian M., Hulfish, Erin W., Maloney, Lauren M., Duman-Bender, Tina M., Kennedy, Christopher, Adler, Mark, Naples, Jeffrey, Luk, Jeffrey, Gleich, Stephen J., Lutfi, Riad, Pearson, Kellie J., Reames, Sakina Erika, Auerbach, Marc A., Abulebda, Kamal
Publikováno v:
In The Journal of Pediatrics January 2025 276
Random tilings of geometrical shapes with dominos or lozenges have been a rich source of universal statistical distributions. This paper deals with domino tilings of checker board rectangular shapes such that the top two and bottom two adjacent squar
Externí odkaz:
http://arxiv.org/abs/1912.02511
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Adler, Mark, van Moerbeke, Pierre
Publikováno v:
Journal of Math. Phys. {\bf 59}, 091418, 21 pp.(2018)
This paper is based on the study of random lozenge tilings of non-convex polygonal regions with interacting non-convexities (cuts) and the corresponding asymptotic kernel as in [3] and [4] (discrete tacnode kernel). Here this kernel is used to find t
Externí odkaz:
http://arxiv.org/abs/1810.04692
Autor:
Adler, Mark, van Moerbeke, Pierre
Publikováno v:
Journal of Physics A: mathematical and theoretical 51 (2018) 423001 (47pp)
This paper gives the most general form of the Adler-Kostant-Symes Theorem, and many applications of it, both finite and infinite dimensional, the former yielding algebraic completely integrable (a.c.i.) systems, and the latter examples in random matr
Externí odkaz:
http://arxiv.org/abs/1810.03168
Publikováno v:
Math phys Anal Geom (2018) 21:9 (pp 1-53)
This paper investigates lozenge tilings of non-convex hexagonal regions and more specifically the asymptotic fluctuations of the tilings within and near the strip formed by opposite cuts in the regions, when the size of the regions tend to infinity,
Externí odkaz:
http://arxiv.org/abs/1706.01055
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Commun. Math. Phys. 364, 287-342 (2018)
This paper studies random lozenge tilings of general non-convex polygonal regions. We show that the pairwise interaction of the non-convexities leads asymptotically to new kernels and thus to new statistics for the tiling fluctuations. The precise ge
Externí odkaz:
http://arxiv.org/abs/1609.06995
Publikováno v:
In Journal of Critical Care December 2020 60:27-31