Zobrazeno 1 - 10
of 22
pro vyhledávání: '"Adinarayana Jagarlapudi"'
Autor:
Hajar Hammouch, Suchitra Patil, Sunita Choudhary, Mounim A. El-Yacoubi, Jan Masner, Jana Kholová, Krithika Anbazhagan, Jiří Vaněk, Huafeng Qin, Michal Stočes, Hassan Berbia, Adinarayana Jagarlapudi, Magesh Chandramouli, Srinivas Mamidi, KVSV Prasad, Rekha Baddam
Publikováno v:
Agriculture, Vol 14, Iss 10, p 1682 (2024)
Non-invasive crop analysis through image-based methods holds great promise for applications in plant research, yet accurate and robust trait inference from images remains a critical challenge. Our study investigates the potential of AI model ensembli
Externí odkaz:
https://doaj.org/article/73c34b7898424644ac633be4c35554ec
Publikováno v:
Smart Agricultural Technology, Vol 4, Iss , Pp 100145- (2023)
Canopy height is an important crop biophysical parameter. It provides information about the crop growth as well as act as an input parameter for biomass and crop yield models. Considering the importance of this parameter, a novel semi-automatic canop
Externí odkaz:
https://doaj.org/article/ec85832825b043a585d42553e145d845
Publikováno v:
Agriculture, Vol 13, Iss 7, p 1292 (2023)
The biophysical properties of a crop are a good indicator of potential crop stress conditions. However, these visible properties cannot indicate areas exhibiting non-visible stress, e.g., early water or nutrient stress. In this research, maize crop b
Externí odkaz:
https://doaj.org/article/886d99ad24c84998b56a5e6cbe73c68d
Publikováno v:
International Journal of Applied Earth Observations and Geoinformation, Vol 104, Iss , Pp 102584- (2021)
Remote estimation of leaf nitrogen content is a critical requirement for precision farm management. Precise knowledge of nitrogen distribution in the crop enables farmers to decide the fertilisation amount required at specific locations on the farm.
Externí odkaz:
https://doaj.org/article/c1748f8437fa4550bdc77d6f31b2aefe
Autor:
Rahul Raj, Jeffrey P. Walker, Vishal Vinod, Rohit Pingale, Balaji Naik, Adinarayana Jagarlapudi
Publikováno v:
International Journal of Applied Earth Observations and Geoinformation, Vol 102, Iss , Pp 102393- (2021)
Remotely sensed estimation of leaf water content (LWC) using optical data at early crop growth stage is important for identification of water-stressed plants. However, its accurate estimation is currently a major challenge due to the coarse spatial a
Externí odkaz:
https://doaj.org/article/9d406a74c89846ed9353fedd1020268b
Autor:
Rahul Raj, Jeffrey P. Walker, Rohit Pingale, Rohit Nandan, Balaji Naik, Adinarayana Jagarlapudi
Publikováno v:
International Journal of Applied Earth Observations and Geoinformation, Vol 96, Iss , Pp 102282- (2021)
Leaf Area Index (LAI) is one of the most important biophysical properties of a crop, used in detecting long-term water stress, estimating biomass, and identifying crop growth stage. Remote sensing based LAI estimation techniques perform well for earl
Externí odkaz:
https://doaj.org/article/c399a071dbb3476098f8c32672c50fa7
Publikováno v:
Sensors, Vol 21, Iss 7, p 2430 (2021)
High-frequency monitoring of agrometeorological parameters is quintessential in the domain of Precision Agriculture (PA), where timeliness of collected observations and the ability to generate ahead-of-time predictions can substantially impact the cr
Externí odkaz:
https://doaj.org/article/1dbeddea94d44f6392d1ceca37ebfe36
Publikováno v:
Studies in Big Data ISBN: 9789819905768
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::340eef2680e40caab7921ac9a1c9bbb2
https://doi.org/10.1007/978-981-99-0577-5_8
https://doi.org/10.1007/978-981-99-0577-5_8
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Computers and Electronics in Agriculture. 155:130-141
One of the major threats for crops around the world due to pest and diseases, which can impact the health, economy, environment, and society at large. In general, several issues related to crop yield improvement arises due to insufficient and inadequ