Zobrazeno 1 - 3
of 3
pro vyhledávání: '"Adeyemi Adefidipe"'
Autor:
Kers, Jesper *, **, Bülow, Roman D *, Klinkhammer, Barbara M, Breimer, Gerben E, Fontana, Francesco, Abiola, Adeyemi Adefidipe, Hofstraat, Rianne, Corthals, Garry L, Peters-Sengers, Hessel, Djudjaj, Sonja, von Stillfried, Saskia, Hölscher, David L, Pieters, Tobias T, van Zuilen, Arjan D, Bemelman, Frederike J, Nurmohamed, Azam S, Naesens, Maarten, Roelofs, Joris J T H, Florquin, Sandrine, Floege, Jürgen, Nguyen, Tri Q, Kather, Jakob N, Boor, Peter *
Publikováno v:
In The Lancet Digital Health January 2022 4(1):e18-e26
Autor:
Garry L. Corthals, Frederike J. Bemelman, Francesco Fontana, Azam S Nurmohamed, Arjan D. van Zuilen, Maarten Naesens, Peter Boor, Jürgen Floege, Gerben E. Breimer, Tri Q. Nguyen, Joris J. T. H. Roelofs, Adeyemi Adefidipe Abiola, Barbara M. Klinkhammer, Saskia von Stillfried, Hessel Peters-Sengers, Sonja Djudjaj, Tobias T Pieters, Rianne Hofstraat, Roman D. Bülow, Sandrine Florquin, Jesper Kers, Jakob Nikolas Kather, David L Hölscher
Publikováno v:
The Lancet Digital Health, 4(1), 18-26. ELSEVIER
The Lancet Digital Health, 4(1), e18-e26. Elsevier Ltd
The lancet / Digital health 4(1), e18-e26 (2022). doi:10.1016/S2589-7500(21)00211-9
Kers, J, Bülow, R D, Klinkhammer, B M, Breimer, G E, Fontana, F, Abiola, A A, Hofstraat, R, Corthals, G L, Peters-Sengers, H, Djudjaj, S, von Stillfried, S, Hölscher, D L, Pieters, T T, van Zuilen, A D, Bemelman, F J, Nurmohamed, A S, Naesens, M, Roelofs, J J T H, Florquin, S, Floege, J, Nguyen, T Q, Kather, J N & Boor, P 2022, ' Deep learning-based classification of kidney transplant pathology : a retrospective, multicentre, proof-of-concept study ', The Lancet Digital Health, vol. 4, no. 1, pp. e18-e26 . https://doi.org/10.1016/S2589-7500(21)00211-9
The Lancet Digital Health, 4(1), e18-e26. Elsevier Ltd
The lancet / Digital health 4(1), e18-e26 (2022). doi:10.1016/S2589-7500(21)00211-9
Kers, J, Bülow, R D, Klinkhammer, B M, Breimer, G E, Fontana, F, Abiola, A A, Hofstraat, R, Corthals, G L, Peters-Sengers, H, Djudjaj, S, von Stillfried, S, Hölscher, D L, Pieters, T T, van Zuilen, A D, Bemelman, F J, Nurmohamed, A S, Naesens, M, Roelofs, J J T H, Florquin, S, Floege, J, Nguyen, T Q, Kather, J N & Boor, P 2022, ' Deep learning-based classification of kidney transplant pathology : a retrospective, multicentre, proof-of-concept study ', The Lancet Digital Health, vol. 4, no. 1, pp. e18-e26 . https://doi.org/10.1016/S2589-7500(21)00211-9
The lancet / Digital health 4(1), e18-e26 (2022). doi:10.1016/S2589-7500(21)00211-9
Published by The Lancet, London
Published by The Lancet, London
Autor:
Meyke Hermsen, Francesco Ciompi, Adeyemi Adefidipe, Aleksandar Denic, Amélie Dendooven, Byron H. Smith, Dominique van Midden, Jan Hinrich Bräsen, Jesper Kers, Mark D. Stegall, Péter Bándi, Tri Nguyen, Zaneta Swiderska-Chadaj, Bart Smeets, Luuk B. Hilbrands, Jeroen A.W.M. van der Laak
Publikováno v:
American Journal of Pathology, 192, 10, pp. 1418-1432
American Journal of Pathology, 192, 1418-1432
American journal of pathology, 192(10), 1418-1432. Elsevier Inc.
The American journal of pathology
American Journal of Pathology, 192, 1418-1432
American journal of pathology, 192(10), 1418-1432. Elsevier Inc.
The American journal of pathology
In kidney transplant biopsies, both inflammation and chronic changes are important features that predict long-term graft survival. Quantitative scoring of these features is important for transplant diagnostics and kidney research. However, visual sco
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::22902e467e616f38c1216ce0cd73baa4