Zobrazeno 1 - 10
of 25
pro vyhledávání: '"Ade Irma Suriajaya"'
Publikováno v:
Indagationes Mathematicae. 33:1236-1262
Autor:
Ade Irma Suriajaya (Chacha)
Publikováno v:
数理解析研究所講究録. 2222:113-127
280年前にゴールドバッハは4より大きい偶数が必ず二つの奇素数の和として書き表せると予想した。その予想が成り立てば、9以上の奇数が三つの奇素数の和として書き表せることが従う
Publikováno v:
Acta Arithmetica. 204:97-113
Autor:
Ade Irma Suriajaya, Daniel A. Goldston
Publikováno v:
Journal of Number Theory. 227:144-157
We show that the error term in the asymptotic formula for the Ces{\`a}ro mean of the singular series in the Goldbach and the Hardy-Littlewood prime-pair conjectures cannot be too small and oscillates.
Comment: 9 pages
Comment: 9 pages
Publikováno v:
Trudy Matematicheskogo Instituta imeni V.A. Steklova. 314:248-274
Класс рядов Дирихле, соответствующих периодическим арифметическим функциям $f$, включает в себя дзета-функцию Римана и $L$-функции характ
Autor:
D. A. Goldston, Ade Irma Suriajaya
Publikováno v:
Research in Number Theory. 8
We prove that the error in the prime number theorem can be quantitatively improved beyond the Riemann Hypothesis bound by using versions of Montgomery's conjecture for the pair correlation of zeros of the Riemann zeta-function which are uniform in lo
Autor:
Shingo Sugiyama, Ade Irma Suriajaya
Publikováno v:
Research in Number Theory. 8
In this paper, we compute the one-level density of low-lying zeros of Dirichlet $L$-functions in a family weighted by special values of Dirichlet $L$-functions at a fixed $s \in [1/2, 1)$. We verify both Fazzari's conjecture and the first author's co
Publikováno v:
The Ramanujan Journal
Let f be an arithmetic function and let $${\mathcal {S}}^\#$$ S # denote the extended Selberg class. We denote by $${\mathcal {L}}(s) = \sum _{n = 1}^{\infty }\frac{f(n)}{n^s}$$ L ( s ) = ∑ n = 1 ∞ f ( n ) n s the Dirichlet series attached to f.
Autor:
Ade Irma Suriajaya
Publikováno v:
数理解析研究所講究録. 2162:42-53
A. Speiser (1935年)はリーマンゼータ関数S(s)の一階導関数S'(s)がRe(s)< 1/2で実数でない零点を持たないことがリーマン予想と同値であることを示した. この結果はS(s)の零点分布とその導閲数の
Autor:
Fan Ge, Ade Irma Suriajaya
Publikováno v:
The Ramanujan Journal. 55:661-672
Assuming the Riemann hypothesis, we prove that $$ N_k(T) = \frac{T}{2\pi}\log \frac{T}{4\pi e} + O_k\left(\frac{\log{T}}{\log\log{T}}\right), $$ where $N_k(T)$ is the number of zeros of $\zeta^{(k)}(s)$ in the region $0
Comment: 10 pages
Comment: 10 pages