Zobrazeno 1 - 10
of 24 737
pro vyhledávání: '"Adaptive thresholding"'
Domain Generalization (DG) seeks to transfer knowledge from multiple source domains to unseen target domains, even in the presence of domain shifts. Achieving effective generalization typically requires a large and diverse set of labeled source data
Externí odkaz:
http://arxiv.org/abs/2412.08479
Semi-supervised multi-label learning (SSMLL) is a powerful framework for leveraging unlabeled data to reduce the expensive cost of collecting precise multi-label annotations. Unlike semi-supervised learning, one cannot select the most probable label
Externí odkaz:
http://arxiv.org/abs/2407.18624
Robust 3D object detection remains a pivotal concern in the domain of autonomous field robotics. Despite notable enhancements in detection accuracy across standard datasets, real-world urban environments, characterized by their unstructured and dynam
Externí odkaz:
http://arxiv.org/abs/2405.07479
Autor:
Al-Ghattas, Omar, Sanz-Alonso, Daniel
This paper studies sparse covariance operator estimation for nonstationary Gaussian processes with sharply varying marginal variance and small correlation lengthscale. We introduce a covariance operator estimator that adaptively thresholds the sample
Externí odkaz:
http://arxiv.org/abs/2405.18562
Robust 3D object detection is a core challenge for autonomous mobile systems in field robotics. To tackle this issue, many researchers have demonstrated improvements in 3D object detection performance in datasets. However, real-world urban scenarios
Externí odkaz:
http://arxiv.org/abs/2404.13852
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Xie, Yifan1 (AUTHOR), Wang, Tianhui1 (AUTHOR), Jeong, Myong K.1 (AUTHOR), Lee, Gyeong Taek1,2 (AUTHOR) leegt@gachon.ac.kr
Publikováno v:
International Journal of Production Research. Sep2024, Vol. 62 Issue 17, p6344-6359. 16p.
Video Anomaly Detection (VAD) has been extensively studied under the settings of One-Class Classification (OCC) and Weakly-Supervised learning (WS), which however both require laborious human-annotated normal/abnormal labels. In this paper, we study
Externí odkaz:
http://arxiv.org/abs/2401.13551
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.