Zobrazeno 1 - 10
of 63
pro vyhledávání: '"Adams, Virginia"'
Autor:
Wang, Zhilin, Dong, Yi, Zeng, Jiaqi, Adams, Virginia, Sreedhar, Makesh Narsimhan, Egert, Daniel, Delalleau, Olivier, Scowcroft, Jane Polak, Kant, Neel, Swope, Aidan, Kuchaiev, Oleksii
Existing open-source helpfulness preference datasets do not specify what makes some responses more helpful and others less so. Models trained on these datasets can incidentally learn to model dataset artifacts (e.g. preferring longer but unhelpful re
Externí odkaz:
http://arxiv.org/abs/2311.09528
Autor:
Xu, Peng, Patwary, Mostofa, Prabhumoye, Shrimai, Adams, Virginia, Prenger, Ryan J., Ping, Wei, Lee, Nayeon, Shoeybi, Mohammad, Catanzaro, Bryan
Parameter efficient learning methods (PERMs) have recently gained significant attention as they provide an efficient way for pre-trained language models (PLMs) to adapt to a downstream task. However, these conclusions are mostly drawn from in-domain
Externí odkaz:
http://arxiv.org/abs/2210.13673
Autor:
Adams, Virginia, Subramanian, Sandeep, Chrzanowski, Mike, Hrinchuk, Oleksii, Kuchaiev, Oleksii
General translation models often still struggle to generate accurate translations in specialized domains. To guide machine translation practitioners and characterize the effectiveness of domain adaptation methods under different data availability sce
Externí odkaz:
http://arxiv.org/abs/2206.01137
Social media posts contain potentially valuable information about medical conditions and health-related behavior. Biocreative VII Task 3 focuses on mining this information by recognizing mentions of medications and dietary supplements in tweets. We a
Externí odkaz:
http://arxiv.org/abs/2111.15641
The Biocreative VII Track-2 challenge consists of named entity recognition, entity-linking (or entity-normalization), and topic indexing tasks -- with entities and topics limited to chemicals for this challenge. Named entity recognition is a well-est
Externí odkaz:
http://arxiv.org/abs/2111.15622
In Track-1 of the BioCreative VII Challenge participants are asked to identify interactions between drugs/chemicals and proteins. In-context named entity annotations for each drug/chemical and protein are provided and one of fourteen different intera
Externí odkaz:
http://arxiv.org/abs/2111.15617
This paper provides an overview of NVIDIA NeMo's neural machine translation systems for the constrained data track of the WMT21 News and Biomedical Shared Translation Tasks. Our news task submissions for English-German (En-De) and English-Russian (En
Externí odkaz:
http://arxiv.org/abs/2111.08634
Autor:
Flanagan, Elizabeth, Tondora, Janis, Harper, Annie, Benedict, Patricia, Giard, Julienne, Bromage, Billy, Williamson, Bridgett, Acker, Paul, Bragg, Cheri, Adams, Virginia, Rowe, Michael
Publikováno v:
Journal of Public Mental Health, 2023, Vol. 22, Issue 3, pp. 127-132.
Externí odkaz:
http://www.emeraldinsight.com/doi/10.1108/JPMH-12-2022-0125
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.