Zobrazeno 1 - 10
of 348 873
pro vyhledávání: '"Adams, P"'
Autor:
Benson, Jordan
We determine the $\tau^n$-torsion in the first 5-lines of the $E_2$ page of the $\mathbb{C}$-motivic Adams spectral sequence using the techniques of Burklund-Xu. In particular, every element in this range is either $\tau^1$-torsion or $\tau$-free. We
Externí odkaz:
http://arxiv.org/abs/2410.16521
Autor:
Roychowdhury, Prasun, Spector, Daniel
The main results of this paper are the establishment of sharp constants for several families of critical Sobolev embeddings. These inequalities were pioneered by David R. Adams, while the sharp constant in the first order case is due to Andrea Cianch
Externí odkaz:
http://arxiv.org/abs/2411.00293
Embedding theorems for symmetric functions without zero boundary condition have been studied on flat Riemannian manifolds, such as the Euclidean space. However, these theorems have only been established on hyperbolic spaces for functions with zero bo
Externí odkaz:
http://arxiv.org/abs/2408.13599
Autor:
Wang Xumin
Publikováno v:
Advances in Nonlinear Analysis, Vol 13, Iss 1, Pp 385-398 (2024)
In this study, we obtain the weighted Hardy-Adams inequality of any even dimension n≥4n\ge 4. Namely, for u∈C0∞(Bn)u\in {C}_{0}^{\infty }\left({{\mathbb{B}}}^{n}) with ∫Bn∣∇n2u∣2dx−∏k=1n⁄2(2k−1)2∫Bnu2(1−∣x∣2)ndx≤1,\mat
Externí odkaz:
https://doaj.org/article/e105a251dcfa45d19d296088a7827370
We prove that Sherali-Adams with polynomially bounded coefficients requires proofs of size $n^{\Omega(d)}$ to rule out the existence of an $n^{\Theta(1)}$-clique in Erd\H{o}s-R\'{e}nyi random graphs whose maximum clique is of size $d\leq 2\log n$. Th
Externí odkaz:
http://arxiv.org/abs/2404.16722
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Hazeltine, Alexander
The Adams conjecture states that the local theta correspondence sends a local Arthur packet to another local Arthur packet. M{\oe}glin confirmed the conjecture when lifting to groups of sufficiently high rank and also showed that it fails in low rank
Externí odkaz:
http://arxiv.org/abs/2403.17867
Autor:
Li, Y. -Y., Zhou, G. -S.
The Adams operators on a Hopf algebra $H$ are the convolution powers of the identity map of $H$. They are also called Hopf powers or Sweedler powers. It is a natural family of operators on $H$ that contains the antipode. We study the linear propertie
Externí odkaz:
http://arxiv.org/abs/2402.13774
We study the Adams-Novikov spectral sequence in $\mathbb{F}_p$-synthetic spectra, computing the synthetic analogs of $\mathrm{BP}$ and its cooperations to identify the synthetic Adams-Novikov $\mathrm{E}_2$-page, computed in a range with a synthetic
Externí odkaz:
http://arxiv.org/abs/2402.14274