Zobrazeno 1 - 10
of 13
pro vyhledávání: '"Adam Přenosil"'
Autor:
Adam Přenosil
Publikováno v:
Acta Universitatis Carolinae: Philosophica et Historica, Vol 2017, Iss 2, Pp 45-61 (2017)
We consider expansions of De Morgan lattices by an additional unary predicate interpreted in each De Morgan lattice by the ideal generated by all elements of the form a ∧ −a, and describe the finite lattice of strict universal Horn classes of suc
Externí odkaz:
https://doaj.org/article/7ec751138d2b44ad91d2c49636ab9985
Autor:
Adam Přenosil
Publikováno v:
Algebra universalis. 82
We study clones on a four-element set related to the clone $\mathsf{DMA}$ of all term functions of the sub\-directly irreducible four-element De~Morgan algebra $\mathbf{DM_{4}}$. We find generating sets for the clones of all functions preserving the
Autor:
Adam Přenosil
We study the lattice of extensions of four-valued Belnap--Dunn logic, called super-Belnap logics by analogy with superintuitionistic logics. We describe the global structure of this lattice by splitting it into several subintervals, and prove some ne
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::d05b97434c6563af93849620d1a1fbe7
Autor:
Nick Galatos, Adam Přenosil
We introduce ($\ell$-)bimonoids as ordered algebras consisting of two compatible monoidal structures on a partially ordered (lattice-ordered) set. Bimonoids form an appropriate framework for the study of a general notion of complementation, which sub
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::31c647c08d7a15c376b9a13ebb42bb62
Autor:
Adam Přenosil
Two fundamental constructions operating on residuated lattices and partially ordered monoids (pomonoids) are so-called nuclear images and conuclear images. Nuclear images allow us to construct many of the ordered algebras which arise in non-classical
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::ec347b7d566b8582fc62295a46d95834
Autor:
Adam Přenosil
Publikováno v:
Notre Dame J. Formal Logic 61, no. 4 (2020), 601-621
The four-valued semantics of Belnap–Dunn logic, consisting of the truth values True, False, Neither, and Both, gives rise to several nonclassical logics depending on which feature of propositions we wish to preserve: truth, nonfalsity, or exact tru
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::a5867d2fc847635521d366e3b8c40018
https://projecteuclid.org/euclid.ndjfl/1609260835
https://projecteuclid.org/euclid.ndjfl/1609260835
Publikováno v:
Studia Logica. 105:1051-1086
The Belnap–Dunn logic (also known as First Degree Entailment, or FDE) is a well-known and well-studied four-valued logic, but until recently little has been known about its extensions, i.e. stronger logics in the same language, called super-Belnap
Autor:
Adam Přenosil
Publikováno v:
Studia Logica. 104:1179-1190
The proofs of some results of abstract algebraic logic, in particular of the transfer principle of Czelakowski, assume the existence of so-called natural extensions of a logic by a set of new variables. Various constructions of natural extensions, cl
Autor:
Adam Přenosil
Publikováno v:
New Essays on Belnap-Dunn Logic ISBN: 9783030311353
We study the expansion of the four-valued Belnap–Dunn logic by a pair of constants 0 and 1 which express respectively the weakest inconsistent proposition and the strongest complete proposition. We then further expand this logic by the intuitionist
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::037b877da74eafc62eb8d3b9852fc711
https://doi.org/10.1007/978-3-030-31136-0_15
https://doi.org/10.1007/978-3-030-31136-0_15
Autor:
Adam Přenosil
Publikováno v:
Studia Logica. 104:389-415
We introduce a novel expansion of the four-valued Belnap---Dunn logic by a unary operator representing reductio ad contradictionem and study its algebraic semantics. This expansion thus contains both the direct, non-inferential negation of the Belnap