Zobrazeno 1 - 10
of 10
pro vyhledávání: '"Adali, Sancar"'
Autor:
Jiang, Zhuolin, Silovsky, Jan, Siu, Man-Hung, Hartmann, William, Gish, Herbert, Adali, Sancar
Multi-label image classification has generated significant interest in recent years and the performance of such systems often suffers from the not so infrequent occurrence of incorrect or missing labels in the training data. In this paper, we extend
Externí odkaz:
http://arxiv.org/abs/2005.00596
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Infrared (IR) imaging has the potential to enable more robust action recognition systems compared to visible spectrum cameras due to lower sensitivity to lighting conditions and appearance variability. While the action recognition task on videos coll
Externí odkaz:
http://arxiv.org/abs/1705.06709
Autor:
Patsolic, Heather, Adali, Sancar, Vogelstein, Joshua T., Park, Youngser, Friebe, Carey E., Li, Gongkai, Lyzinski, Vince
We present a novel approximate graph matching algorithm that incorporates seeded data into the graph matching paradigm. Our Joint Optimization of Fidelity and Commensurability (JOFC) algorithm embeds two graphs into a common Euclidean space where the
Externí odkaz:
http://arxiv.org/abs/1401.3813
Autor:
Adali, Sancar, Priebe, Carey E.
In various data settings, it is necessary to compare observations from disparate data sources. We assume the data is in the dissimilarity representation and investigate a joint embedding method that results in a commensurate representation of dispara
Externí odkaz:
http://arxiv.org/abs/1306.1977
Autor:
Fishkind, Donniell E., Adali, Sancar, Patsolic, Heather G., Meng, Lingyao, Singh, Digvijay, Lyzinski, Vince, Priebe, Carey E.
Publikováno v:
In Pattern Recognition March 2019 87:203-215
Autor:
Fishkind, Donniell E., Adali, Sancar, Patsolic, Heather G., Meng, Lingyao, Singh, Digvijay, Lyzinski, Vince, Priebe, Carey E.
Given two graphs, the graph matching problem is to align the two vertex sets so as to minimize the number of adjacency disagreements between the two graphs. The seeded graph matching problem is the graph matching problem when we are first given a par
Externí odkaz:
http://arxiv.org/abs/1209.0367
Fusion and inference from multiple and massive disparate data sources - the requirement for our most challenging data analysis problems and the goal of our most ambitious statistical pattern recognition methodologies - -has many and varied aspects wh
Externí odkaz:
http://arxiv.org/abs/1112.5510
Publikováno v:
Brazilian Journal of Probability and Statistics, 2013 Aug 01. 27(3), 377-400.
Externí odkaz:
https://www.jstor.org/stable/43601257
Autor:
Adali, Sancar1 sadali1@alumni.jh.edu, Priebe, Carey2
Publikováno v:
Journal of Classification. Oct2016, Vol. 33 Issue 3, p485-506. 22p.