Zobrazeno 1 - 10
of 26
pro vyhledávání: '"Ada Sedova"'
Publikováno v:
Scientific Data, Vol 10, Iss 1, Pp 1-15 (2023)
Abstract In this work, we expand on a dataset recently introduced for protein interface prediction (PIP), the Database of Interacting Protein Structures (DIPS), to present DIPS-Plus, an enhanced, feature-rich dataset of 42,112 complexes for machine l
Externí odkaz:
https://doaj.org/article/55a14900d69745cb88cac888e98a0ddf
Autor:
David M. Rogers, Rupesh Agarwal, Josh V. Vermaas, Micholas Dean Smith, Rajitha T. Rajeshwar, Connor Cooper, Ada Sedova, Swen Boehm, Matthew Baker, Jens Glaser, Jeremy C. Smith
Publikováno v:
Scientific Data, Vol 10, Iss 1, Pp 1-12 (2023)
Measurement(s) equilibrium association constant (KA) Technology Type(s) molecular docking by scoring function Factor Type(s) Chemical formula and connectivity Sample Characteristic - Organism Severe acute respiratory syndrome-related coronavirus Samp
Externí odkaz:
https://doaj.org/article/fa2418daad2b42f89bea3f819d7b07ae
Publikováno v:
Journal of Chemical Information and Modeling.
Autor:
Scott LeGrand, Mathialakan Thavappiragasam, Jens Glaser, Andreas F. Tillack, Matthew B. Baker, Oscar Hernandez, Josh V. Vermaas, Aaron Scheinberg, David M. Rogers, Ada Sedova, Jeff Larkin, Swen Boehm
Publikováno v:
The International Journal of High Performance Computing Applications. 35:452-468
Time-to-solution for structure-based screening of massive chemical databases for COVID-19 drug discovery has been decreased by an order of magnitude, and a virtual laboratory has been deployed at scale on up to 27,612 GPUs on the Summit supercomputer
Autor:
Josh V. Vermaas, Matthew B. Baker, Jeff Larkin, Oscar Hernandez, Swen Boehm, Jeremy C. Smith, Micholas Dean Smith, Jens Glaser, David M. Rogers, Ada Sedova
Publikováno v:
Computing in Science & Engineering. 23:7-16
The urgent search for drugs to combat SARS-CoV-2 has included the use of supercomputers. The use of general-purpose graphical processing units (GPUs), massive parallelism, and new software for high-performance computing (HPC) has allowed researchers
Autor:
Jens Glaser, Ada Sedova, Stephanie Galanie, Daniel W. Kneller, Russell B. Davidson, Elvis Maradzike, Sara Del Galdo, Audrey Labbé, Darren J. Hsu, Rupesh Agarwal, Dmytro Bykov, Arnold Tharrington, Jerry M. Parks, Dayle M. A. Smith, Isabella Daidone, Leighton Coates, Andrey Kovalevsky, Jeremy C. Smith
Publikováno v:
ACS pharmacologytranslational science. 5(4)
Inhibition of the SARS-CoV-2 main protease (M
High-Performance Deep Learning Toolbox for Genome-Scale Prediction of Protein Structure and Function
Autor:
Mu Gao, Peik Lund-Andersen, Alex Morehead, Sajid Mahmud, Chen Chen, Xiao Chen, Nabin Giri, Raj S. Roy, Farhan Quadir, T. Chad Effler, Ryan Prout, Subil Abraham, Wael Elwasif, N. Quentin Haas, Jeffrey Skolnick, Jianlin Cheng, Ada Sedova
Publikováno v:
Workshop Mach Learn HPC Environ
Computational biology is one of many scientific disciplines ripe for innovation and acceleration with the advent of high-performance computing (HPC). In recent years, the field of machine learning has also seen significant benefits from adopting HPC
Publikováno v:
2021 IEEE International Conference on Bioinformatics and Biomedicine (BIBM).
Autor:
Russell B Davidson, Jess Woods, T Chad Effler, Mathialakan Thavappiragasam, Julie C Mitchell, Jerry M Parks, Ada Sedova
Publikováno v:
Bioinformatics. 38:3297-3298
Summary Easy-to-use, open-source, general-purpose programs for modeling a protein structure from inter-atomic distances are needed for modeling from experimental data and refinement of predicted protein structures. OpenMDlr is an open-source Python p
Autor:
Dwayne A. Elias, Jerry M. Parks, T. Chad Effler, Mathialakan Thavappiragasam, Jess Woods, Ada Sedova, Russell B. Davidson
Publikováno v:
BCB
Protein structure prediction has become increasingly popular and successful in recent years. An essential step for fragment-free, template-free methods is the generation of a final three-dimensional protein model from a set of predicted amino acid co