Zobrazeno 1 - 9
of 9
pro vyhledávání: '"Ada Maria de Souza Doering"'
Publikováno v:
Journal of Algebra. 211:736-753
We establish an algorithm that, up to isomorphism, determines all the divisibility orders of Z n and describes them in terms of the archimedean total orders of Z i , 1 ≤ i ≤ n .
Publikováno v:
Glasgow Mathematical Journal. 48:269
Autor:
Ada Maria de Souza Doering
Publikováno v:
Journal of Pure and Applied Algebra. 18:97-109
Let R be a Noetherian domain and let Ah(R) = {k E NI 3P, 0 E Spec R, P c Q, height 0 = height P + height Q/P+ k} the set of abnormalities of R ; notice that R is catenarian if and only if Ah(R) = (0). It is known that Ah(R) needs not be reduced to (0
Publikováno v:
Journal of Algebra. 101(2):403-417
Autor:
Ada Maria de Souza Doering
Publikováno v:
Journal of Algebra. 77(2):443-448
Publikováno v:
Proceedings of the American Mathematical Society. 88:591-594
Let R R be a Noetherian domain and P P a prime ideal of R R . Then R p [ [ X 1 , … , X n ] ] {R_p}[[{X_1}, \ldots ,{X_n}]] has a maximal chain of prime ideals of length r r if and only if R [ [ X 1 , … , X n ] ] ( P , X 1 , … , X n ) R{[[{X_1},
Publikováno v:
Journal of Algebra. (2):711-735
(1) We prove a Weak Approximation Theorem for valuations that are not necessarily independent. (2) We study the existence of intersections of finite families of valuation rings having a prescribed divisibility group and prescribed residue fields.
Publikováno v:
Journal of Pure and Applied Algebra. (3):281-291
Let B be a ring with only finitely many maximal ideals. We classify all the subrings of B that have the same group of units as B; we show that there are only finitely many of them.As an application, we describe all the domains whose divisibility grou
Publikováno v:
Transactions of the American Mathematical Society. 260:583