Zobrazeno 1 - 10
of 60
pro vyhledávání: '"Achim Rettinger"'
Autor:
Christof Schöch, Frédéric Döhl, Achim Rettinger, Evelyn Gius, Peer Trilcke, Peter Leinen, Fotis Jannidis, Maria Hinzmann, Jörg Röpke
Publikováno v:
Zeitschrift für digitale Geisteswissenschaften, Iss 06 (2016)
Despite the TDM exception in German copyright law, Text and Data Mining (TDM) with copyrighted texts is still subject to restrictions, including those concerning the storage, publication and follow-up use of the resulting corpora, leaving the full
Externí odkaz:
https://doaj.org/article/41b7ac72ca374126a1f08eb2dcc6cedc
Autor:
Evelyn Gius, Peer Trilcke, Fotis Jannidis, Achim Rettinger, Frédéric Döhl, Maria Hinzmann, Christof Schöch, Jörg Röpke, Peter Leinen
Publikováno v:
RuZ - Recht und Zugang. 1:160-175
Publikováno v:
The Semantic Web – ISWC 2022 ISBN: 9783031194320
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::a68843b3e304867d81a888f317f4136e
https://doi.org/10.1007/978-3-031-19433-7_9
https://doi.org/10.1007/978-3-031-19433-7_9
Autor:
Maximilian Zipfl, Felix Hertlein, Achim Rettinger, Steffen Thoma, Lavdim Halilaj, Juergen Luettin, Stefan Schmid, Cory Henson
Representing relevant information of a traffic scene and understanding its environment is crucial for the success of autonomous driving. Modeling the surrounding of an autonomous car using semantic relations, i.e., how different traffic participants
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::84214e9b103a87c725daf381b53100c9
Learned latent vector representations are key to the success of many recommender systems in recent years. However, traditional approaches like matrix factorization produce vector representations that capture global distributions of a static recommend
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::633500a9fab11fcc0f3182661536705e
https://doi.org/10.3233/ssw210046
https://doi.org/10.3233/ssw210046
Autor:
Achim Rettinger, Sören Maucher, Jeana Ren, Andreas Thalhammer, Niklas Stoehr, Julian Marstaller, Rudi Studer, Fabian Falck
Publikováno v:
Policy & Internet. 12:367-399
Publikováno v:
AAAI
Almost all of today’s knowledge is stored in databases and thus can only be accessed with the help of domain specific query languages, strongly limiting the number of people which can access the data. In this work, we demonstrate an end-to-end trai
Publikováno v:
The Semantic Web – ISWC 2021 ISBN: 9783030883607
ISWC
ISWC
Traditional computer vision approaches, based on neural networks (NN), are typically trained on a large amount of image data. By minimizing the cross-entropy loss between a prediction and a given class label, the NN and its visual embedding space are
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::c4237db4199d2a5d1451ef7b4bbccf6b
https://doi.org/10.1007/978-3-030-88361-4_21
https://doi.org/10.1007/978-3-030-88361-4_21
Publikováno v:
The Semantic Web ISBN: 9783030773847
ESWC
ESWC
Knowledge graph embeddings (KGE) are vector representations that capture the global distributional semantics of each entity instance and relation type in a static Knowledge Graph (KG). While KGEs have the capability to embed information related to an
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::d24de6200f77ccf38ec75ef23ada9680
https://doi.org/10.1007/978-3-030-77385-4_25
https://doi.org/10.1007/978-3-030-77385-4_25
Publikováno v:
Semantic web, 9 (1), 77-129