Zobrazeno 1 - 7
of 7
pro vyhledávání: '"Accurate polynomial evaluation"'
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Information and Computation
Information and Computation, 2012, 216, pp.57-71. ⟨10.1016/j.ic.2011.09.003⟩
Information and Computation, Elsevier, 2012, pp.57-71. ⟨10.1016/j.ic.2011.09.003⟩
Information and Computation, 2012, 216, pp.57-71. ⟨10.1016/j.ic.2011.09.003⟩
Information and Computation, Elsevier, 2012, pp.57-71. ⟨10.1016/j.ic.2011.09.003⟩
International audience; Several different techniques and softwares intend to improve the accuracy of resultscomputed in a fixed finite precision. Here we focus on methods to improve the accuracyof summation, dot product and polynomial evaluation. Suc
Publikováno v:
Japan Journal of Industrial and Applied Mathematics
Japan Journal of Industrial and Applied Mathematics, Kinokuniya Company, 2009, 26 (2-3), pp.191-214. ⟨10.1007/BF03186531⟩
Japan Journal of Industrial and Applied Mathematics, 2009, 26 (2-3), pp.191-214. ⟨10.1007/BF03186531⟩
Japan J. Indust. Appl. Math. 26, no. 2 (2009), 191-214
Japan Journal of Industrial and Applied Mathematics, Kinokuniya Company, 2009, 26 (2-3), pp.191-214. ⟨10.1007/BF03186531⟩
Japan Journal of Industrial and Applied Mathematics, 2009, 26 (2-3), pp.191-214. ⟨10.1007/BF03186531⟩
Japan J. Indust. Appl. Math. 26, no. 2 (2009), 191-214
International audience; We survey a class of algorithms to evaluate polynomials with floating point coefficients and for computation performed with IEEE-754 floating point arithmetic. The principle is to apply, once or recursively, an error-free tran
Autor:
Langlois, Philippe, Louvet, Nicolas
Publikováno v:
[Research Report] 2008
We introduce an algorithm to evaluate a polynomial with floating point coefficients as accurately as the Horner scheme performed in K times the working precision, for K an arbitrary integer. The principle is to iterate the error-free transformation o
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::8f23edc9fc8c40052577e1ec98fb975e
https://hal.inria.fr/inria-00267077/document
https://hal.inria.fr/inria-00267077/document
Autor:
Langlois, Philippe, Louvet, Nicolas
The compensated Horner algorithm and the Horner algorithm with double-double arithmetic improve the accuracy of polynomial evaluation in IEEE-754 floating point arithmetic. Both yield a polynomial evaluation as accurate as if it was computed with the
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::bca65d3b29c3747a959c6950f2236d1b
https://hal.archives-ouvertes.fr/hal-00165020
https://hal.archives-ouvertes.fr/hal-00165020
Given a multivariate real (or complex) polynomial $p$ and a domain $cal D$, we would like to decide whether an algorithm exists to evaluate $p(x)$ accurately for all $x in {cal D}$ using rounded real (or complex) arithmetic. Here ``accurately'' means
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::3f9e4a3613d1bcf904c3f29b6d0405df
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.