Zobrazeno 1 - 10
of 18 760
pro vyhledávání: '"Abubaker AN"'
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
The automatic detection of pedestrian heads in crowded environments is essential for crowd analysis and management tasks, particularly in high-risk settings such as railway platforms and event entrances. These environments, characterized by dense cro
Externí odkaz:
http://arxiv.org/abs/2411.18164
Schema linking is a crucial step in Text-to-SQL pipelines. Its goal is to retrieve the relevant tables and columns of a target database for a user's query while disregarding irrelevant ones. However, imperfect schema linking can often exclude require
Externí odkaz:
http://arxiv.org/abs/2408.07702
Preference optimization methods have been successfully applied to improve not only the alignment of large language models (LLMs) with human values, but also specific natural language tasks such as summarization and stylistic continuations. This paper
Externí odkaz:
http://arxiv.org/abs/2406.16061
Autor:
Abubaker, Nabil, Hoefler, Torsten
Existing 3D algorithms for distributed-memory sparse kernels suffer from limited scalability due to reliance on bulk sparsity-agnostic communication. While easier to use, sparsity-agnostic communication leads to unnecessary bandwidth and memory consu
Externí odkaz:
http://arxiv.org/abs/2404.19638
This paper explores the effects of various forms of regularization in the context of language model alignment via self-play. While both reinforcement learning from human feedback (RLHF) and direct preference optimization (DPO) require to collect cost
Externí odkaz:
http://arxiv.org/abs/2404.04291
Autor:
Gianinazzi, Lukas, Ziogas, Alexandros Nikolaos, Huang, Langwen, Luczynski, Piotr, Ashkboos, Saleh, Scheidl, Florian, Carigiet, Armon, Ge, Chio, Abubaker, Nabil, Besta, Maciej, Ben-Nun, Tal, Hoefler, Torsten
Publikováno v:
PPoPP'24: Proceedings of the 29th ACM SIGPLAN Annual Symposium on Principles and Practice of Parallel Programming (2024) 404-416
We propose a novel approach to iterated sparse matrix dense matrix multiplication, a fundamental computational kernel in scientific computing and graph neural network training. In cases where matrix sizes exceed the memory of a single compute node, d
Externí odkaz:
http://arxiv.org/abs/2402.19364
Autor:
Haddud, Abubaker
Publikováno v:
Journal of Manufacturing Technology Management, 2024, Vol. 35, Issue 7, pp. 1293-1312.
Externí odkaz:
http://www.emeraldinsight.com/doi/10.1108/JMTM-02-2024-0075
Recently, pretraining methods for the Graph Neural Networks (GNNs) have been successful at learning effective representations from unlabeled graph data. However, most of these methods rely on pairwise relations in the graph and do not capture the und
Externí odkaz:
http://arxiv.org/abs/2311.11368
Publikováno v:
BMC Oral Health, Vol 24, Iss 1, Pp 1-10 (2024)
Abstract Background The current study aimed to assess the clinical and radiographic outcomes of the effect of subgingival application of ozonated gel as an adjunct to scaling and root planing (SRP) in diabetic patients with stage III periodontitis. M
Externí odkaz:
https://doaj.org/article/c445ba5c50e44074be68fb3c95817fb8