Zobrazeno 1 - 10
of 515
pro vyhledávání: '"Absolute constant"'
Publikováno v:
Modern Stochastics: Theory and Applications, Vol 5, Iss 3, Pp 385-410 (2018)
It is shown that the absolute constant in the Berry–Esseen inequality for i.i.d. Bernoulli random variables is strictly less than the Esseen constant, if 1≤n≤500000, where n is a number of summands. This result is got both with the help of a su
Externí odkaz:
https://doaj.org/article/935953d93c6145a297c771e4d94ad901
Autor:
Yuchen Ding, Guang-Liang Zhou
Publikováno v:
Journal of Number Theory. 236:308-322
Square-free values of polynomials had been studied by various authors, including Estermann, Heath-Brown and Hooley. For 1 ≤ x , y ≤ H , Tolev proved that the number of the square-free values attained by the polynomial x 2 + y 2 + 1 has the asympt
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Science China Mathematics. 65:2423-2440
Aharoni and Howard, and, independently, Huang, Loh, and Sudakov proposed the following rainbow version of Erd\H{o}s matching conjecture: For positive integers $n,k,m$ with $n\ge km$, if each of the families $F_1,\ldots, F_m\subseteq {[n]\choose k}$ h
Publikováno v:
Czechoslovak Mathematical Journal. 72:477-511
We consider the Massera-Schaffer problem for the equation $$ - y\prime (x) + q(x)y(x) = f(x),\,\,\,\,\,x \in \mathbb{R},$$ where $$f \in L_p^{{\rm{loc}}}(\mathbb{R})$$ , p ∈ [1, ∞) and $$0 \leqslant q \in L_p^{{\rm{loc}}}(\mathbb{R})$$ . By a sol
Autor:
László Pyber, Attila Maróti
Publikováno v:
Acta Mathematica Hungarica. 164:350-359
Let $$G$$ be a non-abelian finite simple group. A famous result of Liebeck and Shalev is that there is an absolute constant $$c$$ such that whenever $$S$$ is a non-trivial normal subset in $$G$$ then $$S^{k} = G$$ for any integer $$k$$ at least $$c \
Autor:
Zoltán Halasi
Publikováno v:
Journal of Algebra. 569:195-219
A well-known conjecture of Babai states that if G is a finite simple group and X is a generating set of G, then the diameter of the Cayley graph Cay ( G , X ) is bounded above by ( log | G | ) c for some absolute constant c. The goal of this pape
Autor:
Mario Huicochea
Publikováno v:
Journal of Number Theory. 214:202-239
In this paper it is shown that there is an absolute constant κ > 0 with the following property. For any prime p and nonempty subsets A , B of Z / p Z such that 1 | A | p 2 , B ∩ − B = ∅ and | B | κ | A | ln ( | A | ) , we have that max b
Autor:
W. T. Gowers
Publikováno v:
Acta Mathematica Hungarica
Acta Mathematica Hungarica, Springer Verlag, 2020, 161 (2), pp.756-767. ⟨10.1007/s10474-020-01072-z⟩
Acta Mathematica Hungarica, Springer Verlag, 2020, 161 (2), pp.756-767. ⟨10.1007/s10474-020-01072-z⟩
An example is presented of a subset $A$ of $\mathbb Z_N$ of density $\alpha$ such that the largest non-trivial Fourier coefficient of the characteristic function of $A$ is very small, but the probability that a random arithmetic progression (mod $N$)
Autor:
António Girão
Publikováno v:
Journal of Combinatorial Theory, Series B. 142:80-105
Given an edge colouring of a graph with a set of $m$ colours, we say that the graph is $m$-\textit{coloured} if each of the $m$ colours is used. For an $m$-colouring $\Delta$ of $\mathbb{N}^{(2)}$, the complete graph on $\mathbb{N}$, we denote by $\m