Zobrazeno 1 - 9
of 9
pro vyhledávání: '"Abram, William C."'
Path sets are spaces of one-sided infinite symbol sequences corresponding to the one-sided infinite walks beginning at a fixed initial vertex in a directed labeled graph. Path sets are a generalization of one-sided sofic shifts. This paper studies de
Externí odkaz:
http://arxiv.org/abs/2101.02441
Publikováno v:
Advances in Applied Mathematics 126 (2021), no 1, 351--376
This paper studies subsets of one-sided shift spaces on a finite alphabet. Such subsets arise in symbolic dynamics, in fractal constructions, and in number theory. We study a family of decimation operations, which extract subsequences of symbol seque
Externí odkaz:
http://arxiv.org/abs/2010.15215
Publikováno v:
In Advances in Applied Mathematics May 2021 126
Autor:
Abram, William C., Kriz, Igor
We compute the equivariant (stable) complex cobordism ring $(MU_G)_*$ for finite abelian groups $G$.
Comment: Accepted for publication in Mathematics Research Letters
Comment: Accepted for publication in Mathematics Research Letters
Externí odkaz:
http://arxiv.org/abs/1509.08540
Publikováno v:
Experimental Mathematics 26 (2017), no. 4, 468--489
This paper continues the study of the structure of finite intersections of general multiplicative translates $\mathcal{C}(M_1,\ldots,M_n)=\frac{1}{M_1}\Sigma_{3,\bar{2}}\cap\cdots\cap\frac{1}{M_n}\Sigma_{3,\bar{2}}$ for integers $1\leq M_1<\cdots
Externí odkaz:
http://arxiv.org/abs/1508.05967
Autor:
Abram, William C.
For a finite abelian group $G$, we compute the $G$-equivariant formal group law corresponding to the $G$-equivariant complex cobordism spectrum with its canonical complex orientation.
Comment: 11 pages, v9
Comment: 11 pages, v9
Externí odkaz:
http://arxiv.org/abs/1309.0722
Publikováno v:
In Advances in Applied Mathematics May 2014 56:109-134
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Journal of Fractal Geometry; 2014, Vol. 1 Issue 4, p349-390, 42p