Zobrazeno 1 - 10
of 324
pro vyhledávání: '"Abouzeid M"'
Autor:
Abouzeid M. Shalaby
Publikováno v:
European Physical Journal C: Particles and Fields, Vol 81, Iss 1, Pp 1-13 (2021)
Abstract We extract the $$\varepsilon $$ ε -expansion from the recently obtained seven-loop g-expansion for the renormalization group functions of the O(N)-symmetric model. The different series obtained for the critical exponents $$\nu ,\ \omega $$
Externí odkaz:
https://doaj.org/article/af35d423b47f4facbc9bf7f3f18b72d7
Autor:
Shalaby, Abouzeid M.
The perturbation series for the renormalization group functions of the $O(N)-$symmetric $\phi^4$ field theory are divergent but asymptotic. They are usually followed by Resummation calculations to extract reliable results. Although the same features
Externí odkaz:
http://arxiv.org/abs/2409.00271
Autor:
Abouzeid M. Shalaby
Publikováno v:
Results in Physics, Vol 19, Iss , Pp 103376- (2020)
Without Borel or Padé techniques, we show that for a divergent series with n! large-order growth factor, the set of hypergeometric series pFp-2 represents suitable approximants. The divergent pFp-2 series are then resummed via their representation i
Externí odkaz:
https://doaj.org/article/d50fb51ddaf04bfaba04f07697179a93
Autor:
Shalaby, Abouzeid M.
The asymptotic strong-coupling behavior as well as the exact critical exponents from scalar field theory even in the simplest case of $1+1$ dimensions have not been obtained yet. Hagen Kleinert has linked both critical exponents and strong coupling p
Externí odkaz:
http://arxiv.org/abs/2312.08795
Autor:
Shalaby, Abouzeid M.
In previous articles, we showed that, based on large-order asymptotic behavior, one can approximate a divergent series via the parametrization of a specific hypergeometric approximant. The analytical continuation is then carried out through a Mellin-
Externí odkaz:
http://arxiv.org/abs/2210.04575
Autor:
Shalaby, Abouzeid M.
Publikováno v:
In Annals of Physics November 2024 470
Autor:
Shalaby, Abouzeid M.
Publikováno v:
Phys. Rev. D 102, 105017 (2020)
In this work, we use a specific parameterization of the hypergeometric approximants ( the one by Mera et.al in Phys. Rev. Let. 115, 143001 (2015)) to approximate the seven-loop critical exponent $\nu$ for the $O(2)$-symmetric $\phi^4$ model. Our pred
Externí odkaz:
http://arxiv.org/abs/2010.13097
Autor:
Shalaby, Abouzeid M.
We extract the $\varepsilon$-expansion from the recently obtained seven-loop $g$-expansion for the renormalization group functions of the $O(N)$-symmetric model. The different series obtained for the critical exponents $\nu,\ \omega$ and $\eta$ have
Externí odkaz:
http://arxiv.org/abs/2005.12714
Autor:
Shalaby, Abouzeid M.
Publikováno v:
Phys. Rev. D 101, 105006 (2020)
In this work, we show that one can select different types of Hypergeometric approximants for the resummation of divergent series with different large-order growth factors. Being of $n!$ growth factor, the divergent series for the $\varepsilon$-expans
Externí odkaz:
http://arxiv.org/abs/2004.08711
Autor:
Shalaby, Abouzeid M.
Publikováno v:
Results in Physics 19 (2020) 103376
Without Borel or Pad$\acute{e}$ techniques, we show that for a divergent series with $n!$ large-order growth factor, the set of Hypergeometric series $_{k+1}F_{k-1}$ represents suitable approximants for which there exist no free parameters. The diver
Externí odkaz:
http://arxiv.org/abs/2002.05110