Zobrazeno 1 - 10
of 23
pro vyhledávání: '"Aboubacar Marcos"'
Autor:
Aboubacar Marcos, Aboubacar Abdou
Publikováno v:
Boundary Value Problems, Vol 2019, Iss 1, Pp 1-21 (2019)
Abstract We obtain multiplicity and uniqueness results in the weak sense for the following nonhomogeneous quasilinear equation involving the p(x) $p(x)$-Laplacian operator with Dirichlet boundary condition: −Δp(x)u+V(x)|u|q(x)−2u=f(x,u)in Ω,u=0
Externí odkaz:
https://doaj.org/article/bb9258e3d2624c4b8ea69e5902c7c847
Autor:
Aboubacar Marcos, Ambroise Soglo
Publikováno v:
Discrete Dynamics in Nature and Society, Vol 2020 (2020)
In this paper, we extend the variational method of M. Agueh to a large class of parabolic equations involving q(x)-Laplacian parabolic equation ∂ρt,x/∂t=divxρt,x∇xG′ρ+Vqx−2∇xG′ρ+V. The potential V is not necessarily smooth but belon
Externí odkaz:
https://doaj.org/article/a8caa698868443f6951a353db4590b58
Autor:
Aboubacar Marcos, Ambroise Soglo
Publikováno v:
Journal of Mathematics, Vol 2020 (2020)
We use the steepest descent method in an Orlicz–Wasserstein space to study the existence of solutions for a very broad class of kinetic equations, which include the Boltzmann equation, the Vlasov–Poisson equation, the porous medium equation, and
Externí odkaz:
https://doaj.org/article/3c1512a1005f4d02a35ee7c148c0dbb3
Autor:
Aboubacar Abdou, Aboubacar Marcos
Publikováno v:
Electronic Journal of Differential Equations, Vol 2016, Iss 197,, Pp 1-19 (2016)
In this article we study the existence of solutions for the Dirichlet problem $$\displaylines{ -\text{div}(| \nabla u |^{p(x)-2}\nabla u)+V(x)|u|^{q(x)-2}u =f(x,u)\quad \text{in }\Omega,\cr u=0\quad \text{on }\partial \Omega, }$$ where $\Omega
Externí odkaz:
https://doaj.org/article/2773fb7494aa44eca257f4f5211a5382
Autor:
Jonas Doumatè, Aboubacar Marcos
Publikováno v:
Boletim da Sociedade Paranaense de Matemática, Vol 36, Iss 4 (2018)
We deal with the existence of weak solutions of the nonlinear problem $-\Delta_{p}u+V|u|^{p-2}u$ in a bounded smooth domain $\Omega\subset \mathbb{R}^{N}$ which is subject to the boundary condition $|\nabla u|^{p-2}\frac{\partial u}{\partial \nu}=f(x
Externí odkaz:
https://doaj.org/article/93c4bb2a4dd34a69b2654689fab6eab5
Autor:
Liamidi Leadi, Aboubacar Marcos
Publikováno v:
Electronic Journal of Differential Equations, Vol 2011, Iss 82,, Pp 1-13 (2011)
In this work we give necessary and sufficient conditions for having a maximum principle for cooperative elliptic systems involving p-Laplacian operator on a bounded domain. This principle is then used to yield solvability for the considered cooperati
Externí odkaz:
https://doaj.org/article/c2b65a84a419402699b046c50b13aa16
Autor:
Liamidi Leadi, Aboubacar Marcos
Publikováno v:
Electronic Journal of Differential Equations, Vol 2010, Iss 60,, Pp 1-13 (2010)
In this work we give necessary and sufficient conditions for having a maximum principle for cooperative elliptic systems involving p-Laplacian operator on the whole $mathbb{R}^{N}$. This principle is then used to yield solvability for the cooperative
Externí odkaz:
https://doaj.org/article/f402f8ccdac14095afd2635b72498481
Autor:
Aboubacar Marcos
Publikováno v:
Electronic Journal of Qualitative Theory of Differential Equations, Vol 2009, Iss 57, Pp 1-29 (2009)
Problem of the type $-\Delta_{p}u=f(u)+h(x) \textrm{ in } (a, b) $ with $u=0$ on $ \{a,b\} $ is solved under nonresonance conditions stated with respect to the first eigenvalue and the first curve in the Fučik spectrum of $(-\Delta_{p},W_{0}^{1,p}(a
Externí odkaz:
https://doaj.org/article/760001a108764465a9805e825299bd43
Autor:
Liamidi Leadi, Aboubacar Marcos
Publikováno v:
International Journal of Mathematics and Mathematical Sciences, Vol 2007 (2007)
We show the existence of a first curve in the Fučik spectrum with weights for the p-Laplacian under mixed boundary conditions. We also study the asymptotic behavior of this first curve.
Externí odkaz:
https://doaj.org/article/409ab20cb8e6455eacbaf09aa1fa3a60
Autor:
Aboubacar Marcos, Jonas Têlé Doumatè
Publikováno v:
Boletim da Sociedade Paranaense de Matemática, Vol 36, Iss 4, Pp 87-105 (2018)
We deal with the existence of weak solutions of the nonlinear problem $-\Delta_{p}u+V|u|^{p-2}u$ in a bounded smooth domain $\Omega\subset \mathbb{R}^{N}$ which is subject to the boundary condition $|\nabla u|^{p-2}\frac{\partial u}{\partial \nu}=f(x