Zobrazeno 1 - 10
of 28
pro vyhledávání: '"Abelian power"'
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Petrova, E. A., Shur, A. M.
Publikováno v:
Computer Science – Theory and Applications ISBN: 9783031095733
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
In combinatorics on words, repetition thresholds are the numbers separating avoidable and unavoidable repetitions of a given type in a given class of words. For example, the meaning of the “classical” repetition threshold RT(k) is “every infini
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::d38fc7a8e7eaeef6ccf10da7f586d5a0
https://doi.org/10.1007/978-3-031-09574-0_19
https://doi.org/10.1007/978-3-031-09574-0_19
Autor:
Petrova, E. A., Shur, A. M.
Publikováno v:
Lect. Notes Comput. Sci.
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
We define a new quantitative measure for an arbitrary factorial language: the entropy of a random walk in the prefix tree associated with the language; we call it Markov entropy. We relate Markov entropy to the growth rate of the language and the par
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od_______917::00b8bedebfba06d1741d1afc82182903
https://hdl.handle.net/10995/111364
https://hdl.handle.net/10995/111364
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Discrete Mathematics & Theoretical Computer Science, Vol Vol. 12 no. 5, Iss Combinatorics (2010)
Combinatorics
Externí odkaz:
https://doaj.org/article/564ddf3a0a0a46628556adc8d93497e7
We consider repetitions in infinite words by making a novel inquiry to the maximum eventual growth rate of the exponents of abelian powers occurring in an infinite word. Given an increasing, unbounded function f: ℕ → ℝ, we construct an infinite
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::5caf932f9fe5f2f35272a55fc709a7fd
Autor:
Alessio Langiu, Élise Prieur-Gaston, Gabriele Fici, Filippo Mignosi, Thierry Lecroq, Jarkko Peltomäki, Arnaud Lefebvre
Publikováno v:
Theoretical computer science 635 (2016): 16–34. doi:10.1016/j.tcs.2016.04.039
info:cnr-pdr/source/autori:Fici, Gabriele; Langiu, Alessio; Lecroq, Thierry; Lefebvre, Arnaud; Mignosi, Filippo; Peltomäki, Jarkko; Prieur-Gaston, Élise/titolo:Abelian powers and repetitions in Sturmian words/doi:10.1016%2Fj.tcs.2016.04.039/rivista:Theoretical computer science/anno:2016/pagina_da:16/pagina_a:34/intervallo_pagine:16–34/volume:635
Theoretical Computer Science
Theoretical Computer Science, Elsevier, 2016, 635, pp.16-34. ⟨10.1016/j.tcs.2016.04.039⟩
Fici, G, Langiu, A, Lecroq, T, Lefebvre, A, Mignosi, F, Peltomäki, J & Prieur-Gaston, É 2016, ' Abelian powers and repetitions in Sturmian words ', Theoretical Computer Science . https://doi.org/10.1016/j.tcs.2016.04.039
info:cnr-pdr/source/autori:Fici, Gabriele; Langiu, Alessio; Lecroq, Thierry; Lefebvre, Arnaud; Mignosi, Filippo; Peltomäki, Jarkko; Prieur-Gaston, Élise/titolo:Abelian powers and repetitions in Sturmian words/doi:10.1016%2Fj.tcs.2016.04.039/rivista:Theoretical computer science/anno:2016/pagina_da:16/pagina_a:34/intervallo_pagine:16–34/volume:635
Theoretical Computer Science
Theoretical Computer Science, Elsevier, 2016, 635, pp.16-34. ⟨10.1016/j.tcs.2016.04.039⟩
Fici, G, Langiu, A, Lecroq, T, Lefebvre, A, Mignosi, F, Peltomäki, J & Prieur-Gaston, É 2016, ' Abelian powers and repetitions in Sturmian words ', Theoretical Computer Science . https://doi.org/10.1016/j.tcs.2016.04.039
Richomme, Saari and Zamboni (J. Lond. Math. Soc. 83: 79-95, 2011) proved that at every position of a Sturmian word starts an abelian power of exponent $k$ for every $k > 0$. We improve on this result by studying the maximum exponents of abelian power
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::92f85ad06f065b9feed476c54cd14447
https://hal.archives-ouvertes.fr/hal-01956122
https://hal.archives-ouvertes.fr/hal-01956122
Publikováno v:
Discrete Applied Mathematics
Discrete Applied Mathematics, Elsevier, 2016, 212, pp.88-95. ⟨10.1016/j.dam.2015.09.024⟩
Discrete Applied Mathematics, Elsevier, 2016, 212, pp.88-95. ⟨10.1016/j.dam.2015.09.024⟩
Constantinescu and Ilie (Bulletin of the EATCS 89, 167-170, 2006) introduced the idea of an Abelian period with head and tail of a finite word. An Abelian period is called full if both the head and the tail are empty. We present a simple and easy-to-
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::06ee2f33e13974bb74e2b3ff6194c6ec
https://hal.archives-ouvertes.fr/hal-01894875
https://hal.archives-ouvertes.fr/hal-01894875
Publikováno v:
Discrete Applied Mathematics. 158:605-607
Let k>=2 be an integer. An abeliankth power is a word of the form X"1X"2...X"k where X"i is a permutation of X"1 for 2@?i@?k. A word W is said to be crucial with respect to abelian kth powers if W avoids abelian kth powers, but Wx ends with an abelia
Publikováno v:
International Journal of Foundations of Computer Science
International Journal of Foundations of Computer Science, World Scientific Publishing, 2011, 22 (4), pp.905-920. ⟨10.1142/S0129054111008489⟩
International Journal of Foundations of Computer Science, 2011, 22 (4), pp.905-920. ⟨10.1142/S0129054111008489⟩
International Journal of Foundations of Computer Science, World Scientific Publishing, 2011, 22 (4), pp.905-920. ⟨10.1142/S0129054111008489⟩
International Journal of Foundations of Computer Science, 2011, 22 (4), pp.905-920. ⟨10.1142/S0129054111008489⟩
The notion of Abelian complexity of infinite words was recently used by the three last authors to investigate various Abelian properties of words. In particular, using van der Waerden's theorem, they proved that if a word avoids Abelian $k$-powers fo
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::5e102118f3871753c0efbcd206c0e91a
http://arxiv.org/abs/1005.2514
http://arxiv.org/abs/1005.2514