Zobrazeno 1 - 10
of 24
pro vyhledávání: '"Abdesslem Ayoujil"'
Publikováno v:
Boletim da Sociedade Paranaense de Matemática, Vol 42 (2024)
The paper deals with the following Robin problem $$ \left\lbrace \begin{aligned} - \mathcal{M} \left( \int _{\Omega} \frac{1}{p(x)} \vert \nabla u \vert ^{p(x)} dx + \int _{\partial \Omega } \frac{a(x)}{p(x)} \vert \nabla u \vert ^{p(x)} d \sigma \ri
Externí odkaz:
https://doaj.org/article/005670c6c2934533962ce89fe7adb823
Publikováno v:
Boletim da Sociedade Paranaense de Matemática, Vol 42 (2024)
In this paper we investigate existence and non-existence of solutions for a Dirichlet boundary value problem involving the $(p_1(k), p_2(k))$-Laplacian operator when variational methods are applied to obtain the results.
Externí odkaz:
https://doaj.org/article/c68a6d9f1a784d22a41424fb6a506ad4
Autor:
Anass Ourraoui, Abdesslem Ayoujil
Publikováno v:
Arab Journal of Mathematical Sciences, Vol 28, Iss 2, Pp 130-141 (2022)
Purpose – In this article, the authors discuss the existence and multiplicity of solutions for an anisotropic discrete boundary value problem in T-dimensional Hilbert space. The approach is based on variational methods especially on the three criti
Externí odkaz:
https://doaj.org/article/49efb93673bd4c1994da4d704af9278a
Autor:
Abdesslem Ayoujil
Publikováno v:
Boletim da Sociedade Paranaense de Matemática, Vol 37, Iss 3, Pp 55-66 (2019)
This paper presents sufficient conditions for the existence and nonexistence of eigenvalues for a $p(x)$-biharmonic equation with Navier boundary conditions and weight function on a bounded domain in $\mathbb{R}^N$. Our approach is mainly based on a
Externí odkaz:
https://doaj.org/article/c26c3bf4f51d4b1eaa3ac67e772491be
Autor:
Abdesslem Ayoujil
Publikováno v:
Electronic Journal of Qualitative Theory of Differential Equations, Vol 2014, Iss 38, Pp 1-13 (2014)
This paper is concerned with the existence and multiplicity of solutions for $p(x)$-Laplacian Steklov problem without the well-known Ambrosetti-Rabinowitz type growth conditions. By means of critical point theorems with Cerami condition, under weaker
Externí odkaz:
https://doaj.org/article/bf2e2ea060644809a4dd3010fc2f9825
Publikováno v:
Electronic Journal of Differential Equations, Vol 2011, Iss 24,, Pp 1-12 (2011)
In this article, we consider the nonlinear eigenvalue problem $$displaylines{ Delta(|Delta u|^{p(x)-2}Delta u )=lambda |u|^{q(x)-2}uquad hbox{in }Omega, cr u=Delta u = 0quad hbox{on }partialOmega, }$$ where $Omega$ is a bounded domain in $mathbb{R}^{
Externí odkaz:
https://doaj.org/article/85e03cf78a0742efb54d0104abf5ed5b
Autor:
Abdesslem Ayoujil, Abdel R. El Amrouss
Publikováno v:
Electronic Journal of Differential Equations, Vol Conference, Iss 14, Pp 125-133 (2006)
We prove the existence of nontrivial solutions for perturbations of p-Laplacian. Our approach combine minimax arguments and Morse Theory, under the conditions on the behaviors of the perturbed function $f(x,t)$ or its primitive $F(x,t)$ near infinity
Externí odkaz:
https://doaj.org/article/9cacb96c424e4dbfac8790a339f1bff5
Autor:
Anass Ourraoui, Abdesslem Ayoujil
Publikováno v:
Georgian Mathematical Journal. 29:13-23
This paper deals with the existence and multiplicity of solutions for the p ( x ) p(x) -Laplacian Robin problem without the well-known Ambrosetti–Rabinowitz type growth conditions. By means of the variational approach (with the Cerami condition
Publikováno v:
MATHEMATICA. 62:107-116
Using variational method, we study the existence of positive solutions for an anisotropic discrete Dirichlet problem with some functions alpha, beta and a nonlinear term f.
Autor:
Anass Ourraoui, Abdesslem Ayoujil
Publikováno v:
Arab Journal of Mathematical Sciences. 28:130-141
PurposeIn this article, the authors discuss the existence and multiplicity of solutions for an anisotropic discrete boundary value problem in T-dimensional Hilbert space. The approach is based on variational methods especially on the three critical p