Zobrazeno 1 - 10
of 44
pro vyhledávání: '"Abderrazek Karoui"'
Publikováno v:
Electronic Journal of Statistics
Electronic Journal of Statistics, 2021, 15 (2), pp.4343-4383. ⟨10.1214/21-EJS1897⟩
Electronic Journal of Statistics, Shaker Heights, OH : Institute of Mathematical Statistics, 2021, 15 (2), pp.4343-4383. ⟨10.1214/21-EJS1897⟩
Electronic Journal of Statistics, 2021, 15 (2), pp.4343-4383. ⟨10.1214/21-EJS1897⟩
Electronic Journal of Statistics, Shaker Heights, OH : Institute of Mathematical Statistics, 2021, 15 (2), pp.4343-4383. ⟨10.1214/21-EJS1897⟩
We investigate estimation in Poisson regression model when the count response is right-censored and the censoring indicators are missing at random. We propose several estimators based on the regression calibration, multiple imputation and augmented i
Publikováno v:
Integral Transforms and Special Functions. 29:679-698
For two real numbers $c>0, \alpha> -1,$ we study some spectral properties of the weighted finite bilateral Laplace transform operator, defined over the space $E=L^2(I,\omega_{\alpha}),$ $I=[-1,1],$ $\omega_{\alpha}(x)=(1-x^2)^{\alpha},$ by ${\display
Autor:
Mourad Boulsane, Abderrazek Karoui
Publikováno v:
Journal of Fourier Analysis and Applications. 24:1554-1578
For fixed real numbers $$c>0,$$ $$\alpha >-\frac{1}{2},$$ the finite Hankel transform operator, denoted by $$\mathcal {H}_c^{\alpha }$$ is given by the integral operator defined on $$L^2(0,1)$$ with kernel $$K_{\alpha }(x,y)= \sqrt{c xy} J_{\alpha }(
Autor:
Aline Bonami, Abderrazek Karoui
Publikováno v:
Applied and Computational Harmonic Analysis
Applied and Computational Harmonic Analysis, Elsevier, 2015, ⟨10.1016/j.acha.2015.09.001⟩
Applied and Computational Harmonic Analysis, Elsevier, 2015, ⟨10.1016/j.acha.2015.09.001⟩
Recently, there is a growing interest in the spectral approximation by the Prolate Spheroidal Wave Functions (PSWFs) $��_{n, c},\, c>0.$ This is due to the promising new contributions of these functions in various classical as well as emerging ap
Autor:
Aline Bonami, Abderrazek Karoui
Publikováno v:
Applied and Computational Harmonic Analysis
Applied and Computational Harmonic Analysis, Elsevier, 2015, ⟨10.1016/j.acha.2015.05.003⟩
Applied and Computational Harmonic Analysis, Elsevier, 2015, ⟨10.1016/j.acha.2015.05.003⟩
For fixed $c,$ the Prolate Spheroidal Wave Functions (PSWFs) $\psi_{n, c}$ form a basis with remarkable properties for the space of band-limited functions with bandwidth $c$. They have been largely studied and used after the seminal work of D. Slepia
For fixed $$W\in \big (0,\frac{1}{2}\big )$$ and positive integer $$N\ge 1$$, the discrete prolate spheroidal wave functions (DPSWFs), denoted by $$U_{k,W}^N$$, $$0\le k\le N-1$$ form the set of eigenfunctions of the positive and finite rank integral
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::fd813156cbdb2c453b54774e651a0942
Prolate spheroidal wave functions have recently attracted much attention in applied harmonic analysis, signal processing, and mathematical physics. They are eigenvectors of the sinc-kernel operator Qc: the time- and band-limiting operator. The corres
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::3112a23f6055088221eda16f540be1f8
https://hal.archives-ouvertes.fr/hal-01756828/document
https://hal.archives-ouvertes.fr/hal-01756828/document
Autor:
Abderrazek Karoui, Ahmed Souabni
Publikováno v:
Journal of Fourier Analysis and Applications. 22:383-412
In this work, we first give various explicit and local estimates of the eigenfunctions of a perturbed Jacobi differential operator. These eigenfunctions generalize the famous classical prolate spheroidal wave functions (PSWFs), founded in 1960s by Sl
Autor:
Abderrazek Karoui, Aline Bonami
This paper is centred on the spectral study of a Random Fourier matrix, that is an $n\times n$ matrix $A$ whose $(j, k)$ entries are $\exp(2i\pi m X_jY_k)$, with $X_j$ and $Y_k$ two i.i.d sequences of random variables and $1\leq m\leq n$ is a real nu
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::035d7f2cbd849356fd7dace1f3610eba
https://hal.archives-ouvertes.fr/hal-01498277/document
https://hal.archives-ouvertes.fr/hal-01498277/document
Publikováno v:
Journal of Approximation Theory
Journal of Approximation Theory, Elsevier, 2016, 212, pp.41-65
Journal of Approximation Theory, Elsevier, 2016, 212, pp.41-65
The aim of this paper is to investigate the quality of approximation of almost time and almost band-limited functions by its expansion in three classical orthogonal polynomials bases: the Hermite, Legendre and Chebyshev bases. As a corollary, this al
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::5697c30e2041df133da54bc6cfdb0ba1
http://hdl.handle.net/20.500.12278/114255
http://hdl.handle.net/20.500.12278/114255