Zobrazeno 1 - 10
of 43
pro vyhledávání: '"Abderrahim Hantoute"'
Publikováno v:
Set-Valued and Variational Analysis
Publikováno v:
Vietnam Journal of Mathematics. 48:569-588
We give new characterizations for the subdifferential of the supremum of an arbitrary family of convex functions, dropping out the standard assumptions of compactness of the index set and upper semi-continuity of the functions with respect to the ind
Publikováno v:
SIAM Journal on Control and Optimization. 58:462-484
We are concerned with the subdifferentials of integral functionals and functions given in the form $E_f(x)=\int_{T} f(t,x)d\mu$, for a possibly nonconvex normal integrand f defined on a separable B...
Publikováno v:
RUA. Repositorio Institucional de la Universidad de Alicante
Universidad de Alicante (UA)
Universidad de Alicante (UA)
This paper provides new characterizations for the subdifferential of the pointwise supremum of an arbitrary family of convex functions. The main feature of our approach is that the normal cone to the effective domain of the supremum (or to finite-dim
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::066214814415ba4fc97047cd054c814a
https://hdl.handle.net/10045/118782
https://hdl.handle.net/10045/118782
Publikováno v:
Applied Mathematics & Optimization. 83:1709-1737
We provide formulae for the $$\varepsilon $$ -subdifferential of the integral function $$I_f(x):=\int _T f(t,x) d\mu (t)$$ , where the integrand $$f:T\times X \rightarrow \overline{\mathbb {R}}$$ is measurable in (t, x) and convex in x. The state var
Characterizations of the subdifferential of convex integral functions under qualification conditions
Publikováno v:
Journal of Functional Analysis. 277:227-254
This work provides formulae for the $\epsilon$-subdifferential of integral functions in the framework of complete $\sigma$-finite measure spaces and locally convex spaces. In this work we present here new formulae for this $\epsilon$-subdifferential
Publikováno v:
Set-Valued and Variational Analysis. 28:345-368
We give criteria for weak and strong invariant closed sets for differential inclusions given in $\mathbb{R}^{n}$ and governed by Lipschitz Cusco perturbations of maximal monotone operators. Correspondingly, we provide different characterizations for
Publikováno v:
RUA. Repositorio Institucional de la Universidad de Alicante
Universidad de Alicante (UA)
Universidad de Alicante (UA)
We characterize the subdifferential of the supremum function of finitely and infinitely indexed families of convex functions. The main contribution of this paper consists of providing formulas for such a subdifferential under weak continuity assumpti
This book aims at an innovative approach within the framework of convex analysis and optimization, based on an in-depth study of the behavior and properties of the supremum of families of convex functions. It presents an original and systematic trea
Publikováno v:
RUA. Repositorio Institucional de la Universidad de Alicante
Universidad de Alicante (UA)
Universidad de Alicante (UA)
In this paper we develop general formulas for the subdifferential of the pointwise supremum of convex functions, which cover and unify both the compact continuous and the non-compact non-continuous settings. From the non-continuous to the continuous
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::a792eb1d20c983b720ebaf38f9a4be38
https://hdl.handle.net/10045/115193
https://hdl.handle.net/10045/115193