Zobrazeno 1 - 10
of 53
pro vyhledávání: '"Abdelwaheb Hannachi"'
Publikováno v:
Geomatics, Natural Hazards & Risk, Vol 13, Iss 1, Pp 2618-2648 (2022)
This research focuses on extracting the statistical features, in space and time, of the monthly rainfall in Saudi Arabia (SA) and the relation to the large-scale atmospheric variability through teleconnection for strategic water resources planning. T
Externí odkaz:
https://doaj.org/article/3c71a7219bfe48718b243f328eaa47fd
Publikováno v:
Journal of Hydrology: Regional Studies, Vol 42, Iss , Pp 101159- (2022)
Study region: The study is carried out for northern Tunisia. Study focus: Precipitations are often analysed via intensity or accumulation for a specified timescale (e.g., annual, seasonal, etc). We propose in this study to analyse regional rainfall v
Externí odkaz:
https://doaj.org/article/e9dbe1c8ba6f4f158bad7fd627bb8ed7
Autor:
Carlos Pires, Abdelwaheb Hannachi
The monthly anomaly sea surface temperature field over the global ocean exhibit probabilistic dependencies between remote points and lagged times, which are explained eventually by some oceanic or atmospheric bridge of information transfer. Despite m
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::4bdb78302238e5a4ea7ae95165a295f2
https://doi.org/10.5194/egusphere-egu23-9986
https://doi.org/10.5194/egusphere-egu23-9986
Autor:
Amanda S. Black, Didier P. Monselesan, James S. Risbey, Bernadette M. Sloyan, Christopher C. Chapman, Abdelwaheb Hannachi, Doug Richardson, Dougal T. Squire, Carly R. Tozer, Nikolay Trendafilov
Publikováno v:
Artificial Intelligence for the Earth Systems. 1
The ability to find and recognize patterns in high-dimensional geophysical data is fundamental to climate science and critical for meaningful interpretation of weather and climate processes. Archetypal analysis (AA) is one technique that has recently
Publikováno v:
Chaos: An Interdisciplinary Journal of Nonlinear Science. 32:113105
The low-frequency variability of the extratropical atmosphere involves hemispheric-scale recurring, often persistent, states known as teleconnection patterns or regimes, which can have a profound impact on predictability on intra-seasonal and longer
Autor:
Abdelwaheb Hannachi
Publikováno v:
Springer Atmospheric Sciences ISBN: 9783030670726
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::3f93a7b6268d0a45a271955ab09124cd
https://doi.org/10.1007/978-3-030-67073-3_17
https://doi.org/10.1007/978-3-030-67073-3_17
Autor:
Abdelwaheb Hannachi
Publikováno v:
Springer Atmospheric Sciences ISBN: 9783030670726
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::79afea64b19673148003d90695e0576d
https://doi.org/10.1007/978-3-030-67073-3_13
https://doi.org/10.1007/978-3-030-67073-3_13
Autor:
Abdelwaheb Hannachi
Publikováno v:
Springer Atmospheric Sciences ISBN: 9783030670726
This chapter describes the idea behind, and develops the theory of empirical orthogonal functions (EOFs) along with a historical perspective. It also shows different ways to obtain EOFs and provides examples from climate and discusses their physical
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::df5bf416d231e8483aa64b3c8f4f7f91
https://doi.org/10.1007/978-3-030-67073-3_3
https://doi.org/10.1007/978-3-030-67073-3_3
Autor:
Abdelwaheb Hannachi
Publikováno v:
Springer Atmospheric Sciences ISBN: 9783030670726
This chapter describes patterns obtained based on proximity or similarity measures, i.e. multidimensional scaling (MDS). Conventional EOFs correspond to the case of quadratic distance. In this chapter other forms of similarities are discussed, with c
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::00e3b66aae1152e938c7474fb624a068
https://doi.org/10.1007/978-3-030-67073-3_9
https://doi.org/10.1007/978-3-030-67073-3_9
Autor:
Abdelwaheb Hannachi
Publikováno v:
Springer Atmospheric Sciences ISBN: 9783030670726
Weather and Climate data contain a myriad of processes including oscillating and propagating features. In general EOF method is not suited to identify propagating patterns. In this chapter describes a spectral method based on Hilbert transform to ide
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::1e9fcdf4e2057517ff1d177c48b052c6
https://doi.org/10.1007/978-3-030-67073-3_5
https://doi.org/10.1007/978-3-030-67073-3_5