Zobrazeno 1 - 10
of 26
pro vyhledávání: '"Abdellaziz Harrabi"'
Autor:
Abdellaziz Harrabi, Cherif Zaidi
Publikováno v:
Journal of Inequalities and Applications, Vol 2019, Iss 1, Pp 1-29 (2019)
Abstract In this paper, we are concerned with Liouville-type theorems of the Hénon Lane–Emden triharmonic equations in whole space. We prove Liouville-type theorems for solutions belonging to one of the following classes: stable solutions and fini
Externí odkaz:
https://doaj.org/article/38c7367482ce4d90932e0a4a33dd9d23
Publikováno v:
Journal of Inequalities and Applications, Vol 2017, Iss 1, Pp 1-21 (2017)
Abstract Under some assumptions on the nonlinearity f, we will study the nonexistence of nontrivial stable solutions or solutions which are stable outside a compact set of R n $\mathbb {R}^{n}$ for the following semilinear higher-order problem: ( −
Externí odkaz:
https://doaj.org/article/1b053645ca0847d4b834052965a5ad15
Publikováno v:
Advances in Pure and Applied Mathematics. 12:15-29
Publikováno v:
Acta Applicandae Mathematicae. 170:373-385
This paper is devoted to study the following equation $-\Delta u+\lambda u= |u|^{p-1}u \;\;\text{in}\;\Omega $ , with homogeneous Dirichlet or Neumann boundary conditions where $p>1$ , $\lambda >0$ , $\Omega =\mathbb{R}^{n-k}\times \omega $ , $n\geq
Publikováno v:
Communications on Pure & Applied Analysis. 19:2839-2852
In this paper we consider the following semi-linear elliptic problem \begin{document}$ \begin{equation*} -\Delta u+\lambda u = |u|^{p-1}u\quad\mbox{in}\,\, \mathcal{O}, \tag{P} \end{equation*} $\end{document} where \begin{document}$ \mathcal{O} = \ma
Autor:
Cherif Zaidi, Abdellaziz Harrabi
Publikováno v:
Journal of Inequalities and Applications, Vol 2019, Iss 1, Pp 1-29 (2019)
In this paper, we are concerned with Liouville-type theorems of the Hénon Lane–Emden triharmonic equations in whole space. We prove Liouville-type theorems for solutions belonging to one of the following classes: stable solutions and finite Morse
Publikováno v:
Complex Variables and Elliptic Equations. 65:1613-1629
In this paper, we deal with the following polyharmonic system in the zero-mass case ( − Δ ) m u = K ( x ) f ( v ) i n R N , ( − Δ ) m v = K ( x ) g ( u ) i n R N , where K is a positive weight func...
Autor:
Abdellaziz Harrabi
Publikováno v:
Annali di Matematica Pura ed Applicata (1923 -). 198:1675-1692
Consider the following polyharmonic equations: $$\begin{aligned} (-\Delta )^r u=f(u)\ \ \ \text{ in }\,\, \mathcal {O},\qquad \qquad (0.1) \end{aligned}$$where $$\mathcal {O}=\mathbb {R}^n$$ or $$\mathcal {O}=\mathbb {R}_+^n$$ with the Dirichlet boun
Publikováno v:
manuscripta mathematica. 159:57-79
In this paper, we establish $$L^{\infty }$$ and $$L^{p}$$ estimates for solutions of some polyharmonic elliptic equations via the Morse index. As far as we know, it seems to be the first time that such explicit estimates are obtained for polyharmonic
Autor:
Foued Mtiri, Abdellaziz Harrabi
Publikováno v:
Journal of Mathematical Analysis and Applications. 502:125225
We discuss the existence and nonexistence of stable-at-infinity solutions of the m-polyharmonic equation Δ m r u + λ | u | m − 2 u = | u | p − 1 u + β | u | q − 1 u in R N , where m ≥ 2 , N > m r , λ and β are nonnegative real parameters