Zobrazeno 1 - 10
of 16
pro vyhledávání: '"Abdelkrim Barbara"'
Publikováno v:
Boletim da Sociedade Paranaense de Matemática, Vol 36, Iss 1, Pp 79-99 (2018)
In this article, we study the following degenerate unilateral problems: $$ -\mbox{ div} (a(x,\nabla u))+H(x,u,\nabla u)=f,$$ which is subject to the Weighted Sobolev spaces with variable exponent $W^{1,p(x)}_{0}(\Omega,\omega)$, where $\omega$ is a w
Externí odkaz:
https://doaj.org/article/d57d6de787c74cd2a555fd06fe991d1e
Publikováno v:
Electronic Journal of Differential Equations, Vol 2011, Iss 62,, Pp 1-16 (2011)
We prove the existence of solutions to Dirichlet problems associated with the $p(x)$-quasilinear elliptic equation $$ Au =- hbox{div} a(x,u,abla u)= f(x,u,abla u). $$ These solutions are obtained in Sobolev spaces with variable exponents.
Externí odkaz:
https://doaj.org/article/89e5461ea04a4104b2c08237fb20b61f
Autor:
Elhoussine, Azroul1 elhoussine.azroul@gmail.com, Abdelkrim, Barbara1 babdelkarim66@hotmail.com, El Houcine, Rami1 ramielhoucine@gmail.com
Publikováno v:
Proyecciones - Journal of Mathematics. Jun2020, Vol. 39 Issue 3, p529-557. 29p.
Publikováno v:
SeMA Journal. 78:475-499
The aim of this work is to give an existence result of entropy solutions for anisotropic quasilinear degenerated elliptic problems of the form $$\begin{aligned} -\text{ div } (a(x,u,\nabla u)) + |u|^{s-1}u= f +\rho \frac{|u|^{p_{0}-2}u}{|x|^{p_{0}}},
Publikováno v:
Journal of Applied Mathematics and Physics. :2717-2732
Using the theory of weighted Sobolev spaces with variable exponent and the L1-version on Minty’s lemma, we investigate the existence of solutions for some nonhomogeneous Dirichlet problems generated by the Leray-Lions operator of divergence form, w
Publikováno v:
Applied Mathematics. 12:500-519
We consider, for a bounded open domain Ω in Rn and a function u : Ω → Rm, the quasilinear elliptic system: (1). We generalize the system (QES)(f,g) in considering a right hand side depending on the jacobian matrix Du. Here, the star in (QES)(f,g)
Publikováno v:
SeMA Journal. 77:507-529
We prove the existence of weak solution u for the nonlinear parabolic systems: $$\begin{aligned} {(QPS){\omega }} \left\{ \begin{array}{rcl} \partial _{t} u -div\sigma (x,t,u,Du) &{} = &{} v(x,t) + f(x,t,u,Du) + divg(x,t,u)\; \text{ in } \;\; \Omega
Publikováno v:
International Journal of Mathematics Trends and Technology. 66:15-36
Publikováno v:
Advances in Science, Technology and Engineering Systems, Vol 2, Iss 5, Pp 45-54 (2017)
In this paper, we prove the existence of a solution of the strongly nonlinear degenerate p(x)p(x)-elliptic equation of type: \mathcal{(P)}\left\{\begin{array}{rl} - div\; a(x,u,\nabla u) +g(x,u,\nabla u)& = f \quad in \;\Omega, \\ u = 0 \quad on \qua
Publikováno v:
Advances in Science, Technology and Engineering Systems Journal. 2:45-54