Zobrazeno 1 - 9
of 9
pro vyhledávání: '"Abdelhamid Boussejra"'
Publikováno v:
Annals of Global Analysis and Geometry. 61:399-426
Publikováno v:
Journal of Mathematical Analysis and Applications. 453:798-804
We prove that every representation of the Cuntz algebra O N on a separable Hilbert space H arises from a pure isometry V whose wandering space H ⊖ im V has dimension N. We identify the permutative representations in this construction.
Autor:
Abdelhamid Boussejra, Nadia Ourchane
Publikováno v:
Journal of Functional Analysis. 280:108824
Autor:
Abdelhamid Boussejra, Zouhaïr Mouayn
Publikováno v:
Moscow Mathematical Journal. 16:641-649
Autor:
Abdelhamid Boussejra, Hélène Airault
Publikováno v:
Bulletin des Sciences Mathématiques. 137:923-967
The Laplacian and Ornstein–Uhlenbeck operators on the finite dimensional complex ball are obtained from the infinitesimal holomorphic representation of the group U ( n , 1 ) . We compare the invariant measures for these operators with the unitarizi
Autor:
Abdelhamid Boussejra, Khalid Koufany
Publikováno v:
Journal de Mathématiques Pures et Appliquées. 87:438-451
We characterize the L p -range, 1 p + ∞ , of the Poisson transform on the Shilov boundary for non-tube bounded symmetric domains Ω. We prove that this range is a Hardy type space for solutions of a Hua system, which are eigenfunctions of all invar
Autor:
Abdelhamid Boussejra
Publikováno v:
Journal of Functional Analysis. 235:413-429
In this paper, we give a necessary and sufficient condition on eigenfunctions of the Hua operator on a Hermitian symmetric space of tube type X = G / K , to have an L p -Poisson integral representations over the Shilov boundary of X . More precisely,
Autor:
Abdelhamid Boussejra
Publikováno v:
Comptes Rendus de l'Académie des Sciences - Series I - Mathematics. 326:793-798
We give a characterization of those solutions F of the Hua system of differential equations HDF(Z) = − (λ2 + 4)F(Z) · I, that are Poisson-Shilov integrals of L2-functions on the Shilov boundary of the rank two matrix ball.
Autor:
Abdelhamid Boussejra, Koufany Khalid
Publikováno v:
Journal de Mathématiques Pures et Appliquées
Journal de Mathématiques Pures et Appliquées, 2007, 87, pp.438-451
Journal de Mathématiques Pures et Appliquées, Elsevier, 2007, 87, pp.438-451
HAL
Journal de Mathématiques Pures et Appliquées, 2007, 87, pp.438-451
Journal de Mathématiques Pures et Appliquées, Elsevier, 2007, 87, pp.438-451
HAL
We characterize the $L^p$-range, $1 < p < +\infty$, of the Poisson transform on the Shilov boundary for non-tube bounded symmetric domains. We prove that this range is a Hua-Hardy type space for harmonic functions satisfying a Hua system.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::bbb456ac5553deb5fcaefa0d46c9c3c0
https://hal.science/hal-00095481/file/LpPoissonIntegrals.pdf
https://hal.science/hal-00095481/file/LpPoissonIntegrals.pdf