Zobrazeno 1 - 9
of 9
pro vyhledávání: '"Abdelaaziz Sbai"'
Publikováno v:
Opuscula Mathematica, Vol 44, Iss 4, Pp 471-503 (2024)
In this paper, we study the existence and regularity results for nonlinear singular parabolic problems with a natural growth gradient term \[\begin{cases}\frac{\partial u}{\partial t}-\operatorname{div}((a(x,t)+u^{q})|\nabla u|^{p-2}\nabla u)+d(x,t)\
Externí odkaz:
https://doaj.org/article/8aa1525ab23b48a6b36b021ecc361e07
Autor:
Abdelaaziz Sbai, Youssef El Hadfi
Publikováno v:
Boletim da Sociedade Paranaense de Matemática, Vol 42 (2024)
Dans cet article, nous étudions l’existence et la régularité des solutions au problème singulier suivant\ \\begin{equation} \left\{ \begin{array}{lll} &-\displaystyle\mbox{div} \big(a(x,u)\vert\nabla u\vert^{p-2}\nabla u\big) + \vert u\vert^{s-
Externí odkaz:
https://doaj.org/article/7409737cd36440e897dfff89d85c8955
Publikováno v:
Asymptotic Analysis. :1-13
We consider the following non-linear singular elliptic problem (1) − div ( M ( x ) | ∇ u | p − 2 ∇ u ) + b | u | r − 2 u = a u p − 1 | x | p + f u γ in Ω u > 0 in Ω u = 0 on ∂ Ω , where 1 < p < N; Ω ⊂ R N is a bounded regular dom
Publikováno v:
Rendiconti del Circolo Matematico di Palermo Series 2.
Autor:
Abdelaaziz Sbai, Youssef El hadfi
Publikováno v:
Complex Variables and Elliptic Equations. 68:701-718
In this paper, we prove existence and regularity results for solutions of some nonlinear Dirichlet problems for an elliptic equation defined by a degenerate coercive operator and a singular right hand side. \begin{equation}\label{01} \left\{ \begin{a
Publikováno v:
Journal of Elliptic and Parabolic Equations. 8:49-75
In this paper we study existence and regularity results for solution to a nonlinear and singular parabolic problem. The model is $$\begin{aligned} \left\{ \begin{array}{lll} \dfrac{\partial u}{\partial t}-\text{ div }((a(x,t)+|u|^{q})\nabla u)=\frac{
Publikováno v:
Mediterranean Journal of Mathematics. 20
Publikováno v:
Journal of Pseudo-Differential Operators and Applications. 13
Publikováno v:
Discrete & Continuous Dynamical Systems - S. 15:213
In this paper, we establish the existence of weak solution in Orlicz-Sobolev space for the following Kirchhoff type probelm \begin{document}$ \begin{equation*} \left\{ \begin{array}{ll} -M\left( \int_{\Omega}\varPhi(|\nabla u|)dx\right) div(a(|\nabla