Zobrazeno 1 - 10
of 80
pro vyhledávání: '"Aasa, Feragen"'
Autor:
Caroline A. Taksoee-Vester, Kamil Mikolaj, Zahra Bashir, Anders N. Christensen, Olav B. Petersen, Karin Sundberg, Aasa Feragen, Morten B. S. Svendsen, Mads Nielsen, Martin G. Tolsgaard
Publikováno v:
Scientific Reports, Vol 14, Iss 1, Pp 1-9 (2024)
Abstract This study aimed to develop a deep learning model to assess the quality of fetal echocardiography and to perform prospective clinical validation. The model was trained on data from the 18–22-week anomaly scan conducted in seven hospitals f
Externí odkaz:
https://doaj.org/article/893b8353e9154aa598fcf9ba1b3580c9
Publikováno v:
Annals of Surgery Open, Vol 5, Iss 2, p e442 (2024)
Externí odkaz:
https://doaj.org/article/e1f4b17597ed40caaffda4988c486d3b
Autor:
Lisbeth Anita Andreasen, Aasa Feragen, Anders Nymark Christensen, Jonathan Kistrup Thybo, Morten Bo S. Svendsen, Kilian Zepf, Karim Lekadir, Martin Grønnebæk Tolsgaard
Publikováno v:
Scientific Reports, Vol 13, Iss 1, Pp 1-8 (2023)
Abstract The placenta is crucial to fetal well-being and it plays a significant role in the pathogenesis of hypertensive pregnancy disorders. Moreover, a timely diagnosis of placenta previa may save lives. Ultrasound is the primary imaging modality i
Externí odkaz:
https://doaj.org/article/04b9fd21165b42d7a44bdd946462a050
Autor:
Magnus Herberthson, Deneb Boito, Tom Dela Haije, Aasa Feragen, Carl-Fredrik Westin, Evren Özarslan
Publikováno v:
NeuroImage, Vol 238, Iss , Pp 118198- (2021)
Q-space trajectory imaging (QTI) enables the estimation of useful scalar measures indicative of the local tissue structure. This is accomplished by employing generalized gradient waveforms for diffusion sensitization alongside a diffusion tensor dist
Externí odkaz:
https://doaj.org/article/b5e6dff6b3d0483393738d0e6a0a3da3
Publikováno v:
NeuroImage, Vol 209, Iss , Pp 116405- (2020)
In this work we investigate the use of sum of squares constraints for various diffusion-weighted MRI models, with a goal of enforcing strict, global non-negativity of the diffusion propagator. We formulate such constraints for the mean apparent propa
Externí odkaz:
https://doaj.org/article/6ee8165104c3482194a5fb61fafae1fb
Publikováno v:
Biometrika.
Summary Statistical analysis for populations of networks is widely applicable but challenging as networks have strongly non-Euclidean behaviour. Graph space is an exhaustive framework for studying populations of unlabelled networks which are weighted
Publikováno v:
University of Copenhagen
Recent work on algorithmic fairness has largely focused on the fairness of discrete decisions, or classifications. While such decisions are often based on risk score models, the fairness of the risk models themselves has received considerably less at
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::037372d9b1646070343ba01206d3e88c
http://arxiv.org/abs/2302.08851
http://arxiv.org/abs/2302.08851
Publikováno v:
Czolbe, S, Pegios, P, Krause, O & Feragen, A 2023, ' Semantic similarity metrics for image registration ', Medical Image Analysis, vol. 87, 102830 . https://doi.org/10.1016/j.media.2023.102830
Image registration aims to find geometric transformations that align images. Most algorithmic and deep learning-based methods solve the registration problem by minimizing a loss function, consisting of a similarity metric comparing the aligned images
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::a6d5f375a8c1c0dc5c913e152d10a09b
https://orbit.dtu.dk/en/publications/7a793a13-9569-4174-86f9-7897adfc126d
https://orbit.dtu.dk/en/publications/7a793a13-9569-4174-86f9-7897adfc126d
Autor:
Manxi Lin, Aasa Feragen
Publikováno v:
Lecture Notes in Computer Science ISBN: 9783031200618
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::c0c156b0b4df7ad0d0c013e18b16961e
https://doi.org/10.1007/978-3-031-20062-5_22
https://doi.org/10.1007/978-3-031-20062-5_22
Publikováno v:
Lecture Notes in Computer Science ISBN: 9783031164309
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::6aa751aedb7e87fcc6b6bcc9d50ab175
https://doi.org/10.1007/978-3-031-16431-6_9
https://doi.org/10.1007/978-3-031-16431-6_9