Zobrazeno 1 - 10
of 100
pro vyhledávání: '"Aaron Pixton"'
Autor:
Kool, M., Thomas, R.
Publikováno v:
Pure and Applied Mathematics Quarterly
We study the full stable pair theory --- with descendents --- of the Calabi-Yau 3-fold $X=K_S$, where $S$ is a surface with a smooth canonical divisor $C$. By both $\mathbb C^*$-localisation and cosection localisation we reduce to stable pairs suppor
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od______1874::54a79d6ecfafb14ec9074f60cbb4c280
https://hdl.handle.net/21.11116/0000-0006-B56B-621.11116/0000-0006-B56D-421.11116/0000-0006-B56E-3
https://hdl.handle.net/21.11116/0000-0006-B56B-621.11116/0000-0006-B56D-421.11116/0000-0006-B56E-3
Autor:
Pixton, Aaron, Bastien, Fanny
The counting function associated to the moduli space of stable pairs on a 3-fold X is conjectured to give the Laurent expansion of a rational function. For toric X, this conjecture can be proven by a careful grouping of the box con gurations appearin
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od_______166::dbe34d622c8f347795d37a18707d723b
https://hal.archives-ouvertes.fr/medihal-01320765
https://hal.archives-ouvertes.fr/medihal-01320765
Autor:
Felix Janda, Aaron Pixton
Publikováno v:
Épijournal de Géométrie Algébrique, Vol Volume 3 (2019)
We study some aspects of the $\lambda_g$ pairing on the tautological ring of $M_g^c$, the moduli space of genus $g$ stable curves of compact type. We consider pairing kappa classes with pure boundary strata, all tautological classes supported on the
Externí odkaz:
https://doaj.org/article/803971fbc5bd4f2f82092a7cf0ee8185
Publikováno v:
Journal für die reine und angewandte Mathematik, 2017 (732)
We prove an explicit formula for the total Chern character of the Verlindebundle of conformal blocks over ℳ¯g,n in terms of tautological classes. The Chern characters of the Verlinde bundles define a semisimple CohFT (the ranks, given by the Verli
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::8ad174f993b688b1b81c2f8ac849d1f9
http://doc.rero.ch/record/332008/files/crelle-2015-0003.pdf
http://doc.rero.ch/record/332008/files/crelle-2015-0003.pdf
Autor:
Aaron Pixton, Georg Oberdieck
Publikováno v:
Geom. Topol. 23, no. 3 (2019), 1415-1489
arXiv
arXiv
We conjecture that the relative Gromov-Witten potentials of elliptic fibrations are (cycle-valued) lattice quasi-Jacobi forms and satisfy a holomorphic anomaly equation. We prove the conjecture for the rational elliptic surface in all genera and curv
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::72e271d4d7757bb51ae1d9e801033d6b
https://projecteuclid.org/euclid.gt/1559700276
https://projecteuclid.org/euclid.gt/1559700276
Autor:
Rahul Pandharipande, Aaron Pixton
Publikováno v:
Journal of the American Mathematical Society. 30:389-449
We use the Gromov-Witten/Pairs (GW/P) descendent correspondence for toric 3-folds and degeneration arguments to establish the GW/P correspondence for several compact Calabi-Yau (CY) 3-folds (including all CY complete intersections in products of proj
Publikováno v:
Journal of Topology
Let X be a nonsingular projective algebraic variety, and let S be a line bundle on X. Let A = (a_1,..., a_n) be a vector of integers. Consider a map f from a pointed curve (C,x_1,...,x_n) to X satisfying the following condition: the line bundle f*(S)
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::45e682be5a57e2fabea2c02ba0752f1a
http://arxiv.org/abs/1812.10136
http://arxiv.org/abs/1812.10136
Autor:
Aaron Pixton
Publikováno v:
Geometry of Moduli ISBN: 9783319948805
We describe a generalization of the usual boundary strata classes in the Chow ring of \(\overline {M}_{g,n}\). The generalized boundary strata classes additively span a subring of the tautological ring. We describe a multiplication law satisfied by t
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::49ae8c4c9d2526e5f499ed9fb7bf2cf9
https://doi.org/10.1007/978-3-319-94881-2_9
https://doi.org/10.1007/978-3-319-94881-2_9
Autor:
Aaron Pixton, Georg Oberdieck
Publikováno v:
arXiv
Let $S$ be a K3 surface and let $E$ be an elliptic curve. We solve the reduced Gromov-Witten theory of the Calabi-Yau threefold $S \times E$ for all curve classes which are primitive in the K3 factor. In particular, we deduce the Igusa cusp form conj
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::b58cc7304f6391c1f4e15864131565e5
Publikováno v:
Journal of the American Mathematical Society. 28:279-309
Witten’s class on the moduli space of 3-spin curves defines a (non-semisimple) cohomological field theory. After a canonical modification, we construct an associated semisimple CohFT with a non-trivial vanishing property obtained from the homogenei