Zobrazeno 1 - 10
of 46
pro vyhledávání: '"Aapo Varpula"'
Autor:
Aapo Varpula, Kirsi Tappura, Jonna Tiira, Kestutis Grigoras, Olli-Pekka Kilpi, Kuura Sovanto, Jouni Ahopelto, Mika Prunnila
Publikováno v:
APL Photonics, Vol 6, Iss 3, Pp 036111-036111-11 (2021)
Infrared (IR) radiation detectors are used in numerous applications from thermal imaging to spectroscopic gas sensing. Obtaining high speed and sensitivity, low-power operation, and cost-effectiveness with a single technology remains to be a challeng
Externí odkaz:
https://doaj.org/article/25a9065e47be441aac3cbaeffa7b48ed
Autor:
Aapo Varpula, Kestutis Grigoras, Kirsi Tappura, Andrey V. Timofeev, Andrey Shchepetov, Juha Hassel, Jouni Ahopelto, Mika Prunnila
Publikováno v:
Proceedings, Vol 2, Iss 13, p 894 (2018)
The state-of-the-art infrared (IR) detection uses quantum photodetectors and bolometers. Quantum IR photodetectors are expensive and require cooling, and exotic and toxic materials. Whereas, bolometers are cost-efficient and uncooled, but they are mu
Externí odkaz:
https://doaj.org/article/98286b2a8b68460b97d640aa161ece60
Publikováno v:
Proceedings, Vol 2, Iss 13, p 883 (2018)
Microchips have been designed and fabricated for the fast thermal characterization of samples by extension of the 3-omega method. Both solid and liquid samples can be measured by applying a small amount of material under investigation on the chip con
Externí odkaz:
https://doaj.org/article/1bf70e10c3fd4a6b8752af3ef94c0c1b
Autor:
Aapo Varpula, Anton Murros, Kuura Sovanto, Arto Rantala, David Gomes-Martins, Kirsi Tappura, Jonna Tiira, Mika Prunnila
Publikováno v:
Optical Components and Materials XX.
Autor:
Jouni Ahopelto, Mika Prunnila, Kai Viherkanto, Kestutis Grigoras, Aapo Varpula, Jonna Tiira, Kirsi Tappura
Publikováno v:
Varpula, A, Tappura, K, Tiira, J, Grigoras, K, Viherkanto, K, Ahopelto, J & Prunnila, M 2020, High-performance infrared thermoelectric bolometers based on nanomembranes . in A Adibi, S-Y Lin & A Scherer (eds), Photonic and Phononic Properties of Engineered Nanostructures X ., 112891O, International Society for Optics and Photonics SPIE, Proceedings of SPIE, vol. 11289, Photonic and Phononic Properties of Engineered Nanostructures X 2020, San Francisco, United States, 3/02/20 . https://doi.org/10.1117/12.2542194
The state-of-the-art infrared (IR) photodetectors are either thermal detectors (bolometers) or quantum detectors (photovoltaic and photoconductive detectors). Compared to quantum IR photodetectors, IR bolometers are slower and less sensitive but in t
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::1cf5e2c0ffd673b240db17163b434fe2
https://cris.vtt.fi/en/publications/3106c44b-72ad-49d6-b3f7-85cd29a7b7a4
https://cris.vtt.fi/en/publications/3106c44b-72ad-49d6-b3f7-85cd29a7b7a4
Autor:
Jouni Ahopelto, Kestutis Grigoras, Mika Prunnila, Aapo Varpula, Andrey Shchepetov, Juha Hassel
Publikováno v:
Varpula, A, Shchepetov, A, Grigoras, K, Hassel, J, Prunnila, M & Ahopelto, J 2019, Silicon Membranes for Nanophononics . in 18th International Conference on Nanotechnology, NANO 2018 ., 8626348, IEEE Institute of Electrical and Electronic Engineers, Proceedings of the IEEE Conference on Nanotechnology, 18th International Conference on Nanotechnology, NANO 2018, Cork, Ireland, 23/07/18 . https://doi.org/10.1109/NANO.2018.8626348
The highly reduced thermal conductivity arising from confinement of acoustic phonons and enhanced phonon scattering in ultra-thin freestanding silicon membranes enables fabrication of sensitive thermal thermoelectric detectors. The devices show very
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::71be971fc75a6ce75075eaec1a1b537f
https://doi.org/10.1109/NANO.2018.8626348
https://doi.org/10.1109/NANO.2018.8626348
Autor:
Aapo Varpula, David Renahy, Kestutis Grigoras, Kirsi Tappura, Andrey Timofeev, Andrey Shchepetov, Juha Hassel, Jouni Ahopelto, Séverine Gomès, Mika Prunnila
Publikováno v:
Varpula, A, Renahy, D, Grigoras, K, Tappura, K, Timofeev, A, Shchepetov, A, Hassel, J, Ahopelto, J, Gomès, S & Prunnila, M 2018, Silicon nano-thermoelectric detectors for for sensing and instrumentation applications . in Book of abstracts. Nanoscale and Microscale Heat Transfer VI : Eurotherm seminar No 111 ., 192, Nanoscale and Microscale Heat Transfer VI, NMHT-VI, Kittilä, Finland, 2/12/18 .
VTT Technical Research Centre of Finland-PURE
VTT Technical Research Centre of Finland-PURE
Thermoelectric devices consisting of a thermocouple or thermopile can be used as efficient detectors in various applications. Thermoelectric detectors themselves do not require external power to operate. This eliminates noise sources associated with
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::2b7c724457d7a11efb645c58bdf345ad
https://cris.vtt.fi/en/publications/ce9bc5fa-ecf0-4329-815b-52dc797cafb6
https://cris.vtt.fi/en/publications/ce9bc5fa-ecf0-4329-815b-52dc797cafb6
Publikováno v:
Proceedings, Vol 2, Iss 13, p 883 (2018)
Grigoras, K, Varpula, A, Grosse, C, May, D, Ras, M A & Prunnila, M 2018, ' Sensors for Thermal Characterization of Solid and Liquid Samples by 3-Omega Method ', Proceedings, vol. 2, no. 13, 883 . https://doi.org/10.3390/proceedings2130883
Proceedings
Grigoras, K, Varpula, A, Grosse, C, May, D, Ras, M A & Prunnila, M 2018, ' Sensors for Thermal Characterization of Solid and Liquid Samples by 3-Omega Method ', Proceedings, vol. 2, no. 13, 883 . https://doi.org/10.3390/proceedings2130883
Proceedings
Microchips have been designed and fabricated for the fast thermal characterization of samples by extension of the 3-omega method. Both solid and liquid samples can be measured by applying a small amount of material under investigation on the chip con
Autor:
Aapo Varpula, Mika Prunnila, Pierre-Olivier Chapuis, Corinna Grosse, Kestutis Grigoras, Daniel May, Mohamad Abo Ras, Severine Gomes, Bernhard Wunderle
Publikováno v:
Grosse, C, Ras, M A, Varpula, A, Grigoras, K, May, D, Wunderle, B, Chapuis, P-O, Gomès, S & Prunnila, M 2018, ' Microfabricated sensor platform with through-glass vias for bidirectional 3-omega thermal characterization of solid and liquid samples ', Sensors and Actuators A: Physical, vol. 278, pp. 33-42 . https://doi.org/10.1016/j.sna.2018.05.030
Sensors and Actuators A: Physical
Sensors and Actuators A: Physical, Elsevier, 2018, 278, pp.33-42. ⟨10.1016/j.sna.2018.05.030⟩
Sensors and Actuators A: Physical
Sensors and Actuators A: Physical, Elsevier, 2018, 278, pp.33-42. ⟨10.1016/j.sna.2018.05.030⟩
A novel microfabricated, all-electrical measurement platform is presented for a direct, accurate and rapid determination of the thermal conductivity and diffusivity of liquid and solid materials. The measurement approach is based on the bidirectional
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::0081b452c81cc9dc140f509261220c59
https://hal.science/hal-01781935
https://hal.science/hal-01781935
Autor:
Kestutis Grigoras, Bernhard Wunderle, Aapo Varpula, Karim Elabshihy, Mika Prunnila, Daniel May, Mohamad Abo Ras, Corinna Grosse
Publikováno v:
Grosse, C, Ras, M A, Grigoras, K, May, D, Varpula, A, Elabshihy, K, Wunderle, B & Prunnila, M 2018, Rapid Thermal Characterization of Materials with Ultra-High Resolution of Droplet Size Specimens using the Three-Omega Method . in Proceedings of the 17th InterSociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, ITherm 2018 ., 8419617, IEEE Institute of Electrical and Electronic Engineers, pp. 562-566, 17th InterSociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, ITherm 2018, San Diego, United States, 29/05/18 . https://doi.org/10.1109/ITHERM.2018.8419617
Measuring the thermal conductivity can be challenging, especially for liquids or pastes of small volumes. We developed a measurement chip which is suitable for a fast, accurate and convenient determination of the thermal conductivity and diffusivity
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::63941bd4ead407a0929ce45d3b0451ba
https://doi.org/10.1109/ITHERM.2018.8419617
https://doi.org/10.1109/ITHERM.2018.8419617