Zobrazeno 1 - 10
of 31
pro vyhledávání: '"Aamari, Eddie"'
Autor:
Aamari, Eddie, Berenfeld, Clément
Given i.i.d. sample from a stratified mixture of immersed manifolds of different dimensions, we study the minimax estimation of the underlying stratified structure. We provide a constructive algorithm allowing to estimate each mixture component at it
Externí odkaz:
http://arxiv.org/abs/2405.20066
We study the estimation of the reach, an ubiquitous regularity parameter in manifold estimation and geometric data analysis. Given an i.i.d. sample over an unknown $d$-dimensional $\mathcal{C}^k$-smooth submanifold of $\mathbb{R}^D$, we provide optim
Externí odkaz:
http://arxiv.org/abs/2207.06074
We derive non-asymptotic minimax bounds for the Hausdorff estimation of $d$-dimensional submanifolds $M \subset \mathbb{R}^D$ with (possibly) non-empty boundary $\partial M$. The model reunites and extends the most prevalent $\mathcal{C}^2$-type set
Externí odkaz:
http://arxiv.org/abs/2108.03135
In network analysis, a measure of node centrality provides a scale indicating how central a node is within a network. The coreness is a popular notion of centrality that accounts for the maximal smallest degree of a subgraph containing a given node.
Externí odkaz:
http://arxiv.org/abs/2105.03122
Autor:
Aamari, Eddie, Knop, Alexander
This paper studies the statistical query (SQ) complexity of estimating $d$-dimensional submanifolds in $\mathbb{R}^n$. We propose a purely geometric algorithm called Manifold Propagation, that reduces the problem to three natural geometric routines:
Externí odkaz:
http://arxiv.org/abs/2011.04259
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Aamari, Eddie
Certains jeux de données présentent des caractéristiques géométriques et topologiques non triviales qu'il peut être intéressant d'inférer.Cette thèse traite des vitesses non-asymptotiques d'estimation de différentes quantités géométrique
Externí odkaz:
http://www.theses.fr/2017SACLS203
Autor:
Aamari, Eddie1 (AUTHOR) aamari@lpsm.paris, Knop, Alexander2 (AUTHOR)
Publikováno v:
Foundations of Computational Mathematics. Feb2024, Vol. 24 Issue 1, p1-97. 97p.
Autor:
Aamari, Eddie, Kim, Jisu, Chazal, Frédéric, Michel, Bertrand, Rinaldo, Alessandro, Wasserman, Larry
Various problems in manifold estimation make use of a quantity called the reach, denoted by $\tau\_M$, which is a measure of the regularity of the manifold. This paper is the first investigation into the problem of how to estimate the reach. First, w
Externí odkaz:
http://arxiv.org/abs/1705.04565
Autor:
Aamari, Eddie, Levrard, Clément
Given an $n$-sample drawn on a submanifold $M \subset \mathbb{R}^D$, we derive optimal rates for the estimation of tangent spaces $T\_X M$, the second fundamental form $II\_X^M$, and the submanifold $M$.After motivating their study, we introduce a qu
Externí odkaz:
http://arxiv.org/abs/1705.00989