Zobrazeno 1 - 10
of 26
pro vyhledávání: '"ATHMOUNI, Nassim"'
Limiting absorption principle for long-range perturbation in the discrete triangular lattice setting
We study the discrete Laplacian acting on a triangular lattice. We perturb the metric and the potential in a long-range way. We aim at proving a Limiting Absorption Principle away the possible embedded eigenvalues. The approach is based on a positive
Externí odkaz:
http://arxiv.org/abs/2403.06578
We study perturbations of the discrete Laplacian associated to discrete analogs of cusps and funnels. We perturb the metric and the potential in a long-range way. We establish a propagation estimate and a Limiting Absorption Principle away from the p
Externí odkaz:
http://arxiv.org/abs/1902.04467
We establish the various properties as well as diverse relations of the ascent and descent spectra for bounded linear operators. We specially focus on the theory of subspectrum. Furthermore, we construct a new concept of convergence for such spectra.
Externí odkaz:
http://arxiv.org/abs/1808.08045
Autor:
Athmouni, Nassim, Purice, Radu
We prove criteria for a {\it 'magnetic' Weyl operator} to be in a Schatten-von Neuman class by extending a method developed by H. Cordes, T. Kato and G. Arsu.
Externí odkaz:
http://arxiv.org/abs/1601.04613
Publikováno v:
J. Math. Phys., 51, 083517, (2010)
For families of magnetic pseudodifferential operators defined by symbols and magnetic fields depending continuously on a real parameter $\epsilon$, we show that the corresponding family of spectra also varies continuously with $\epsilon$.
Commen
Commen
Externí odkaz:
http://arxiv.org/abs/0912.0652
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Methods of Functional Analysis and Topology. 27:205-216
We establish the various properties as well as diverse relations of the ascent and descent spectra for bounded linear operators. We specially focus on the theory of subspectrum. Furthermore, we construct a new concept of convergence for such spectra.
We prove that it is always possible to add some divergence free drift vector eld to some spherical Dirichlet problem, such that the resulting principal eigenvalue lies above a prescribed bound. The drift vector eld can be chosen to vanish on the boun
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::206c825719d4ab263c157867eb37f696
https://hal.archives-ouvertes.fr/hal-03502864
https://hal.archives-ouvertes.fr/hal-03502864
Publikováno v:
Complex Analysis and Operator Theory
Complex Analysis and Operator Theory, Springer Verlag, 2020, ⟨10.1007/s11785-020-01053-8⟩
Complex Analysis and Operator Theory, Springer Verlag, 2020, ⟨10.1007/s11785-020-01053-8⟩
International audience; We study perturbations of the discrete Laplacian associated to discrete analogs of cusps and funnels. We perturb the metric and the potential in a long-range way. We establish a propagation estimate and a Limiting Absorption P
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::94a4e7f5b1732bc6ef25ba3ffb6c6b5a
https://hal.archives-ouvertes.fr/hal-02000996
https://hal.archives-ouvertes.fr/hal-02000996
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.