Zobrazeno 1 - 10
of 144
pro vyhledávání: '"ASTUTI, PUDJI"'
Publikováno v:
Finite fields and their applications, August 2021
Alahmadi et al. ["Twisted centralizer codes", \emph{Linear Algebra and its Applications} {\bf 524} (2017) 235-249.] introduced the notion of twisted centralizer codes, $\mathcal{C}_{\mathbb{F}_q}(A,\gamma),$ defined as \[ \mathcal{C}_{\mathbb{F}_q}(A
Externí odkaz:
http://arxiv.org/abs/2110.01826
Autor:
Astuti, Pudji, Wimmer, Harald K.
Publikováno v:
Journal of Indonesian Mathematics Society, 7(1), 1-7, 2001
We study pairs of finitely generated modules over a principal ideal domain and their corresponding matrix representations. We introduce equivalence relations for such pairs and determine invariants and canonical forms.
Comment: 7 pages
Comment: 7 pages
Externí odkaz:
http://arxiv.org/abs/1804.00536
Autor:
Rusdiana, Emmilia1 emmiliarusdiana@unesa.ac.id, Astuti, Pudji1, Ahmad, Gelar Ali1, Mahardhika, Vita1, Hikmah, Nurul1
Publikováno v:
Technium Social Sciences Journal. 2023 Special Issue, Vol. 50, p26-31. 6p.
Publikováno v:
Jurnal Indonesia Sosial Teknologi; Sep2024, Vol. 5 Issue 9, p3550-3556, 7p
Autor:
Astuti, Pudji, Wimmer, Harald K.
Publikováno v:
Systems Control Lett. 44, 333-337 (2001)
If the inverse of a nonsingular polynomial matrix $L$ has a polynomial part then one can associate with $L$ a module over the ring of proper rational functions, which is related to the structure of $L$ at infinity. In this paper we characterize homom
Externí odkaz:
http://arxiv.org/abs/1607.06370
Autor:
Astuti, Pudji, Wimmer, Harald K.
Publikováno v:
Automatica J. IFAC. 42, 1503-1506 (2006)
Invariant subspaces of a matrix $A$ are considered which are obtained by truncation of a Jordan basis of a generalized eigenspace of $A$. We characterize those subspaces which are independent of the choice of the Jordan basis. An application to Hamil
Externí odkaz:
http://arxiv.org/abs/1607.06361
Autor:
Astuti, Pudji, Wimmer, Harald K.
Publikováno v:
Oper. Matrices 3, 261-270 (2009)
Let $V$ be a finite dimensional vector space over a field $K$ and $f$ a $K$-endomorphism of $V$. In this paper we study three types of $f$-invariant subspaces, namely hyperinvariant subspaces, which are invariant under all endomorphisms of $V$ that c
Externí odkaz:
http://arxiv.org/abs/1606.07201
Autor:
Astuti, Pudji, Wimmer, Harald K.
Publikováno v:
Linear Algebra Appl. 438, 1551-1563 (2013)
Let $f$ be an endomorphism of a vector space $V$ over a field $K$. An $f$-invariant subspace $X \subseteq V$ is called hyperinvariant (respectively characteristic) if $X$ is invariant under all endomorphisms (respectively automorphisms) that commute
Externí odkaz:
http://arxiv.org/abs/1603.06228
Autor:
Astuti, Pudji, Wimmer, Harald K.
Publikováno v:
Linear Algebra Appl. 482(2015), 21-46
Let $f$ be an endomorphism of a finite dimensional vector space $V$ over a field $K$. An $f$-invariant subspace of $V$ is called hyperinvariant (respectively characteristic) if it is invariant under all endomorphisms (respectively automorphisms) that
Externí odkaz:
http://arxiv.org/abs/1602.06485
Autor:
Astuti, Pudji, Wimmer, Harald K.
Publikováno v:
Czechoslovak. Math. J. 56, Number 2, 2006, 349--357
A submodule $W$ of a p-primary module $M$ of bounded order is known to be regular if $W$ and $M$ have simultaneous bases. In this paper we derive necessary and sufficient conditions for regularity of a submodule.
Comment: 10 pages
Comment: 10 pages
Externí odkaz:
http://arxiv.org/abs/1601.06356