Zobrazeno 1 - 10
of 10
pro vyhledávání: '"ARATA KOMYO"'
Autor:
ARATA KOMYO
Publikováno v:
Publications of the Research Institute for Mathematical Sciences; 2024, Vol. 60 Issue 1, p185-269, 85p
Publikováno v:
Comptes Rendus. Mathématique. 359(5):617-624
We describe some results on moduli space of logarithmic connections equipped with framings on a $n$-pointed compact Riemann surface.
Final version; to appear in Comptes Rendus S\'erie Math\'ematique
Final version; to appear in Comptes Rendus S\'erie Math\'ematique
Autor:
Arata Komyo1 a-koumyou@cr.math.sci.osaka-u.ac.jp, Masa-Hiko Saito2 mhsaito@math.kobe-u.ac.jp
Publikováno v:
Kyoto Journal of Mathematics. 2019, Vol. 59 Issue 3, p515-552. 38p.
Autor:
Arata Komyo
Publikováno v:
Nagoya Mathematical Journal. 225:185-206
In this paper, we investigate the mixed Hodge structures of the moduli space of -stable parabolic Higgs bundles and the moduli space of -stable regular singular parabolic connections. We show that the mixed Hodge polynomials are independent of the ch
Autor:
Arata Komyo
A. Girand has constructed an explicit two-parameter family of flat connections over the complex projective plane $\mathbb{P}^2$. These connections have dihedral monodromy and their polar locus is a prescribed quintic composed of a conic and three tan
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::a63d459b1acf8dd1943ea8a512514f15
Autor:
Arata Komyo
Publikováno v:
Manuscripta Mathematica. 150:441-464
In this paper, we give an explicit description of a certain character variety of dimension 2, and we construct a compactification of the character variety. We show that the compactification is a del Pezzo surface. One motivation of the explicit descr
Autor:
Arata Komyo
Publikováno v:
Annales de l'Institut Fourier. 65:1493-1523
In this paper, we construct compactifications of $SL_2(\mathbb{C})$-character varieties of $n$-punctured projective line and study the boundary divisor of the compactifications. This study is motivated by the conjecture for the configuration of the b
Autor:
Arata Komyo
In this paper, we study the moduli spaces of parabolic connections with a quadratic differential. We endow these moduli spaces with symplectic structures by using the fundamental 2-forms on the moduli spaces of parabolic connections (which are phase
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::929aaae8e99496cf846b38f097b3ae51
Autor:
Arata Komyo
In this paper, we treat moduli spaces of parabolic connections. We take \'etale coverings of the moduli spaces, and we construct a Hamiltonian structure of an algebraic vector field determined by the isomonodromic deformation for each \'etale morphis
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::a66f474baf505fc65d47ab6305dbb316
http://arxiv.org/abs/1611.03601
http://arxiv.org/abs/1611.03601
Autor:
Arata Komyo
Publikováno v:
Manuscripta Mathematica; Jul2016, Vol. 150 Issue 3/4, p441-464, 24p