Zobrazeno 1 - 10
of 477
pro vyhledávání: '"ALI, Fawad"'
Autor:
Ali, Fawad1 (AUTHOR) fawadali365@gmail.com, Zhao, Yiren1 (AUTHOR) 18737449313@163.com, Ali, Arif2 (AUTHOR) arifali@bs.qau.edu.pk, Waseem, Muhammad1 (AUTHOR) m.waseem.botanist@gmail.com, Arif, Mian A. R.3 (AUTHOR) m.a.rehman.arif@gmail.com, Shah, Obaid Ullah1 (AUTHOR) obaidus890@gmail.com, Liao, Li1 (AUTHOR) liaoli@hainanu.edu.cn, Wang, Zhiyong1 (AUTHOR) liaoli@hainanu.edu.cn
Publikováno v:
International Journal of Molecular Sciences. Nov2024, Vol. 25 Issue 21, p11360. 38p.
The power graph denoted by $\mathcal{P}(\mathcal{G})$ of a finite group $\mathcal{G}$ is a graph with vertex set $\mathcal{G}$ and there is an edge between two distinct elements $u, v \in \mathcal{G}$ if and only if $u^m = v$ or $v^m = u$ for some $m
Externí odkaz:
http://arxiv.org/abs/2212.12459
The power graph $G = P(\Omega)$ of a finite group $\Omega$ is a graph with the vertex set $\Omega$ and two vertices $u, v \in \Omega$ form an edge if and only if one is an integral power of the other. Let $D(G)$, $A(G)$, $RT(G)$, and $RD(G)$ denote t
Externí odkaz:
http://arxiv.org/abs/2210.00709
The power graph $P(\Omega)$ of a group $\Omega$ is a graph with the vertex set $\Omega$ such that two distinct vertices form an edge if and only if one of them is an integral power of the other. In this article, we determine the power graph of the gr
Externí odkaz:
http://arxiv.org/abs/2209.15237
The power graph $P(G)$ of a group $G$ is a simple graph with the vertex set $G$ such that two distinct vertices $u,v \in G$ are adjacent in $P(G)$ if and only if $u^m = v$ or $v^m = u$, for some $m \in \mathbb{N}$. The purpose of this paper is to int
Externí odkaz:
http://arxiv.org/abs/2208.00743
Autor:
Muhammad, Wisal, Ali, Wajid, Khan, Muhammad Asif, Ali, Fawad, Zada, Amir, Ansar, Muhammad Zaka, Yap, Pow-Seng
Publikováno v:
In Journal of Environmental Chemical Engineering October 2024 12(5)
Publikováno v:
In Next Materials January 2025 6
Autor:
Muhammad, Ishaq, Hassan, Syed Shams ul, Farooq, Muhammad Asad, Zhang, Haozhen, Ali, Fawad, Xiao, Xue, Yan, Shi-Kai, Jin, Hui-Zi
Publikováno v:
In Journal of Molecular Structure 15 September 2024 1312 Part 2
Autor:
Gong, Xiaobao, Zhang, Zhipeng, Shi, Xiang, Zhu, Yurong, Ali, Fawad, Dong, Yong, Zhang, Feng, Zhang, Baoshun
Publikováno v:
In Carbohydrate Polymers 1 June 2024 333
Autor:
Hussain, Azmat, Ali, Fawad, Ahmed, Hafiz Hammad, Abbas khan, Siddiqi, Jamil ur Rehman, Ikhioya, Imosobomeh L.
Publikováno v:
In Hybrid Advances April 2024 5