Zobrazeno 1 - 10
of 33
pro vyhledávání: '"ALEXANDER LOBODA"'
Autor:
Dmitrii Usoltsev, Nikita Kolosov, Oxana Rotar, Alexander Loboda, Maria Boyarinova, Ekaterina Moguchaya, Ekaterina Kolesova, Anastasia Erina, Kristina Tolkunova, Valeriia Rezapova, Ivan Molotkov, Olesya Melnik, Olga Freylikhman, Nadezhda Paskar, Asiiat Alieva, Elena Baranova, Elena Bazhenova, Olga Beliaeva, Elena Vasilyeva, Sofia Kibkalo, Rostislav Skitchenko, Alina Babenko, Alexey Sergushichev, Alena Dushina, Ekaterina Lopina, Irina Basyrova, Roman Libis, Dmitrii Duplyakov, Natalya Cherepanova, Kati Donner, Paivi Laiho, Anna Kostareva, Alexandra Konradi, Evgeny Shlyakhto, Aarno Palotie, Mark J. Daly, Mykyta Artomov
Publikováno v:
Nature Communications, Vol 15, Iss 1, Pp 1-10 (2024)
Abstract The population of Russia consists of more than 150 local ethnicities. The ethnic diversity and geographic origins, which extend from eastern Europe to Asia, make the population uniquely positioned to investigate the shared properties of inhe
Externí odkaz:
https://doaj.org/article/5db0f79709df484e81724be4b4650737
Autor:
Rostislav Skitchenko, Sergey Smirnov, Mikhail Krapivin, Anna Smirnova, Mykyta Artomov, Alexander Loboda, Yulia Dinikina
Publikováno v:
Frontiers in Oncology, Vol 14 (2024)
Next-generation sequencing technologies have not only defined a breakthrough in medical genetics, but also been able to enter routine clinical practice to determine individual genetic susceptibilities. Modern technological developments are routinely
Externí odkaz:
https://doaj.org/article/91dffaacb08f4420a035245803e28d69
Publikováno v:
HGG Advances, Vol 4, Iss 3, Pp 100203- (2023)
Summary: We introduce a user-friendly tool for risk gene, cell type, and drug prioritization for complex traits: GCDPipe. It uses gene-level GWAS-derived data and gene expression data to train a model for the identification of disease risk genes and
Externí odkaz:
https://doaj.org/article/2d27baf2df134ffda1ff0cffa044e3eb
Autor:
Nikita Kolosov, Valeriia Rezapova, Oxana Rotar, Alexander Loboda, Olga Freylikhman, Olesya Melnik, Alexey Sergushichev, Christine Stevens, Trudy Voortman, Anna Kostareva, Alexandra Konradi, Mark J Daly, Mykyta Artomov
Publikováno v:
PLoS ONE, Vol 17, Iss 6, p e0269434 (2022)
Numerous studies demonstrated the lack of transferability of polygenic score (PGS) models across populations and the problem arising from unequal presentation of ancestries across genetic studies. However, even within European ancestry there are ethn
Externí odkaz:
https://doaj.org/article/6b6ca80d87ee4cf7be9ab9320df5fc66
Publikováno v:
The Ocular Surface. 25:49-54
We have previously used Immuno Tomography (IT) to identify label-retaining stem cell populations in the cornea and meibomian gland. While this method provides the unique ability to quantify stem cell populations comprised of 1-4 cells, the number of
Autor:
SERGEY CHUYKIN, ALEXANDER LOBODA
Publikováno v:
News of higher educational institutions. Construction. 762:70-80
Autor:
Dmitrii Usoltsev, Nikita Kolosov, Oxana Rotar, Alexander Loboda, Maria Boyarinova, Ekaterina Moguchaya, Ekaterina Kolesova, Anastasia Erina, Kristina Tolkunova, Valeriia Rezapova, Olesya Melnik, Olga Freylikhman, Nadezhda Paskar, Asiiat Alieva, Elena Baranova, Elena Bazhenova, Olga Beliaeva, Elena Vasilyeva, Sofia Kibkalo, Rostislav Skitchenko, Alina Babenko, Alexey Sergushichev, Alena Dushina, Ekaterina Lopina, Irina Basyrova, Roman Libis, Dmitrii Duplyakov, Natalya Cherepanova, Kati Donner, Paivi Laiho, Anna Kostareva, Alexandra Konradi, Evgeny Shlyakhto, Aarno Palotie, Mark J. Daly, Mykyta Artomov
The population of Russia consists of more than 150 local ethnicities. The ethnic diversity and geographic origins, which extend from eastern Europe to Asia, make the population uniquely positioned to investigate the shared properties of inherited dis
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::f6dbc861160e017a872cb3de50c470d3
https://doi.org/10.1101/2023.03.23.534000
https://doi.org/10.1101/2023.03.23.534000
Autor:
Ilya Kossovskiy, Alexander Loboda
Publikováno v:
Mathematical Research Letters. 29:1165-1196
We introduce a user-friendly machine learning tool for risk gene, cell type, and drug ranking for complex traits - GCDPipe. It uses gene-level GWAS-derived data and publicly available expression data to train a model for prediction of disease risk ge
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::fbdbea9a1235325c946e0d82d5021a72
https://doi.org/10.1101/2022.07.27.501775
https://doi.org/10.1101/2022.07.27.501775
Autor:
Mariia Emelianova, Anastasiia Gainullina, Nikolay Poperechnyi, Alexander Loboda, Maxim Artyomov, Alexey Sergushichev
Publikováno v:
Nucleic acids research.
Multiple high-throughput omics techniques provide different angles on systematically quantifying and studying metabolic regulation of cellular processes. However, an unbiased analysis of such data and, in particular, integration of multiple types of