Zobrazeno 1 - 10
of 15
pro vyhledávání: '"AI in Brief"'
Autor:
de Vries, Clarisse F., Colosimo, Samantha J., Staff, Roger T., Dymiter, Jaroslaw A., Yearsley, Joseph, Dinneen, Deirdre, Boyle, Moragh, Harrison, David J., Anderson, Lesley A., Lip, Gerald
Publikováno v:
Radiol Artif Intell
Artificial intelligence (AI) tools may assist breast screening mammography programs, but limited evidence supports their generalizability to new settings. This retrospective study used a 3-year dataset (April 1, 2016–March 31, 2019) from a U.K. reg
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=pmc_________::df3e86ec71579feb6863b2d1c133638c
https://europepmc.org/articles/PMC10245180/
https://europepmc.org/articles/PMC10245180/
Autor:
Lara Riem, Xue Feng, Matthew Cousins, Olivia DuCharme, Elizabeth B. Leitch, Brian C. Werner, Andrew J. Sheean, Joe Hart, Ivan J. Antosh, Silvia S. Blemker
Publikováno v:
Radiol Artif Intell
The authors aimed to develop and validate an automated artificial intelligence (AI) algorithm for three-dimensional (3D) segmentation of all four rotator cuff (RC) muscles to quantify intramuscular fat infiltration (FI) and individual muscle volume.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::8f20c76bab2f4643d6b7af001c446b2a
https://europepmc.org/articles/PMC10077094/
https://europepmc.org/articles/PMC10077094/
Autor:
Zhizheng Zhuo, Jie Zhang, Yunyun Duan, Liying Qu, Chenlu Feng, Xufang Huang, Dan Cheng, Xiaolu Xu, Ting Sun, Zhaohui Li, Xiaopeng Guo, Xiaodong Gong, Yongzhi Wang, Wenqing Jia, Decai Tian, Xinghu Zhang, Fudong Shi, Sven Haller, Frederik Barkhof, Chuyang Ye, Yaou Liu
Publikováno v:
Zhuo, Z, Zhang, J, Duan, Y, Qu, L, Feng, C, Huang, X, Cheng, D, Xu, X, Sun, T, Li, Z, Guo, X, Gong, X, Wang, Y, Jia, W, Tian, D, Zhan, X, Shi, F, Haller, S, Barkhof, F, Ye, C & Liu, Y 2022, ' Automated Classification of Intramedullary Spinal Cord Tumors and Inflammatory Demyelinating Lesions Using Deep Learning ', Radiology. Artificial intelligence, vol. 4, no. 6, e210292 . https://doi.org/10.1148/ryai.210292
Radiol Artif Intell
Radiology. Artificial intelligence, 4(6):e210292. Radiological Society of North America Inc.
Radiol Artif Intell
Radiology. Artificial intelligence, 4(6):e210292. Radiological Society of North America Inc.
Accurate differentiation of intramedullary spinal cord tumors and inflammatory demyelinating lesions and their subtypes are warranted because of their overlapping characteristics at MRI but with different treatments and prognosis. The authors aimed t
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::973b6adbd87b56bee5e36ea5da4bf26b
https://research.vumc.nl/en/publications/301a5cfa-218b-4647-a6c0-02259626b35e
https://research.vumc.nl/en/publications/301a5cfa-218b-4647-a6c0-02259626b35e
Autor:
Yong En Kok, Stefan Pszczolkowski, Zhe Kang Law, Azlinawati Ali, Kailash Krishnan, Philip M. Bath, Nikola Sprigg, Robert A. Dineen, Andrew P. French
Publikováno v:
Radiol Artif Intell
This study evaluated deep learning algorithms for semantic segmentation and quantification of intracerebral hemorrhage (ICH), perihematomal edema (PHE), and intraventricular hemorrhage (IVH) on noncontrast CT scans of patients with spontaneous ICH. M
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::7fd6a0291e331e539b751481d186a254
Autor:
Jeffrey D. Rudie, Evan Calabrese, Rachit Saluja, David Weiss, John B. Colby, Soonmee Cha, Christopher P. Hess, Andreas M. Rauschecker, Leo P. Sugrue, Javier E. Villanueva-Meyer
Publikováno v:
Radiology. Artificial intelligence, vol 4, iss 5
Radiol Artif Intell
Radiol Artif Intell
Neural networks were trained for segmentation and longitudinal assessment of posttreatment diffuse glioma. A retrospective cohort (from January 2018 to December 2019) of 298 patients with diffuse glioma (mean age, 52 years ± 14 [SD]; 177 men; 152 pa
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::563261cc8a41399b9ed0a5a9a13220b3
https://escholarship.org/uc/item/8h01j5xb
https://escholarship.org/uc/item/8h01j5xb
Publikováno v:
Radiol Artif Intell
UK Biobank (UKB) has recruited more than 500 000 volunteers from the United Kingdom, collecting health-related information on genetics, lifestyle, blood biochemistry, and more. Ongoing medical imaging of 100 000 participants with 70 000 follow-up ses
Autor:
Ye, Zezhong, Qian, Jack M., Hosny, Ahmed, Zeleznik, Roman, Plana, Deborah, Likitlersuang, Jirapat, Zhang, Zhongyi, Mak, Raymond H., Aerts, Hugo J. W. L., Kann, Benjamin H.
Publikováno v:
Radiology: Artificial Intelligence, 4(3):210285. Radiological Society of North America, Inc.
Radiology: Artificial Intelligence
Radiol Artif Intell
Radiology: Artificial Intelligence
Radiol Artif Intell
Identifying the presence of intravenous contrast material on CT scans is an important component of data curation for medical imaging-based artificial intelligence model development and deployment. Use of intravenous contrast material is often poorly
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::a0159e167e043c71c47651998c708675
https://cris.maastrichtuniversity.nl/en/publications/e1820e66-20cc-46fa-abe2-2901af98cebf
https://cris.maastrichtuniversity.nl/en/publications/e1820e66-20cc-46fa-abe2-2901af98cebf
Autor:
Akshay Goel, George Shih, Sadjad Riyahi, Sunil Jeph, Hreedi Dev, Rejoice Hu, Dominick Romano, Kurt Teichman, Jon D. Blumenfeld, Irina Barash, Ines Chicos, Hanna Rennert, Martin R. Prince
Publikováno v:
Radiol Artif Intell
This study develops, validates, and deploys deep learning for automated total kidney volume (TKV) measurement (a marker of disease severity) on T2-weighted MRI studies of autosomal dominant polycystic kidney disease (ADPKD). The model was based on th
Autor:
Albert Hsiao, Lewis D. Hahn, Tara Retson, Andrew Yen, Sharon S. Brouha, Kathleen Jacobs, Seth Kligerman, Kyle Hasenstab
Publikováno v:
Radiol Artif Intell
Quantitative imaging measurements can be facilitated by artificial intelligence (AI) algorithms, but how they might impact decision-making and be perceived by radiologists remains uncertain. After creation of a dedicated inspiratory-expiratory CT exa
Publikováno v:
Radiology. Artificial intelligence, vol 4, iss 2
Radiol Artif Intell
Radiol Artif Intell
CT pulmonary angiography (CTPA) is the first-line imaging test for evaluation of acute pulmonary emboli. However, diagnostic quality is heterogeneous across institutions and is frequently limited by suboptimal pulmonary artery (PA) contrast enhanceme
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::565394ab6cff9b33dc6fdc299486d5c0
https://escholarship.org/uc/item/5456g4sm
https://escholarship.org/uc/item/5456g4sm