Zobrazeno 1 - 10
of 279
pro vyhledávání: '"AGRAWAL, NITIN"'
Autor:
Zhao, Rui, Goel, Naman, Agrawal, Nitin, Zhao, Jun, Stein, Jake, Verborgh, Ruben, Binns, Reuben, Berners-Lee, Tim, Shadbolt, Nigel
Data-driven decision-making and AI applications present exciting new opportunities delivering widespread benefits. The rapid adoption of such applications triggers legitimate concerns about loss of privacy and misuse of personal data. This leads to a
Externí odkaz:
http://arxiv.org/abs/2309.16365
Autor:
Agrawal, Nitin
An ideal polymerase chain reaction (PCR) system should be capable of rapidly amplifying a wide range of targets in both single and multiplex formats. Unfortunately, the timescales and complexities involved in many existing technologies impose signifi
Externí odkaz:
http://hdl.handle.net/1969.1/ETD-TAMU-1060
Publikováno v:
ACM CCS 2021
We address the problem of efficiently verifying a commitment in a two-party computation. This addresses the scenario where a party P1 commits to a value $x$ to be used in a subsequent secure computation with another party P2 that wants to receive ass
Externí odkaz:
http://arxiv.org/abs/2109.07461
Autor:
Singh, Sonia, Agrawal, Nitin
Publikováno v:
In Pharmacological Research - Modern Chinese Medicine March 2024 10
Autor:
Agrawal, Nitin, Sharma, Satish C.
Publikováno v:
In Tribology International March 2024 191
Homomorphic encryption, secure multi-party computation, and differential privacy are part of an emerging class of Privacy Enhancing Technologies which share a common promise: to preserve privacy whilst also obtaining the benefits of computational ana
Externí odkaz:
http://arxiv.org/abs/2101.08048
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Recently, there has been a wealth of effort devoted to the design of secure protocols for machine learning tasks. Much of this is aimed at enabling secure prediction from highly-accurate Deep Neural Networks (DNNs). However, as DNNs are trained on da
Externí odkaz:
http://arxiv.org/abs/1907.03372
Autor:
Agrawal, Nitin, Sharma, Satish C.
Publikováno v:
In International Journal of Mechanical Sciences 15 February 2023 240
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.