Zobrazeno 1 - 10
of 218
pro vyhledávání: '"AGOSTINI,CLAUDIO A"'
Autor:
Agostini, Claudio, Medini, Andrea
All spaces are assumed to be separable and metrizable. Building on work of van Engelen, Harrington, Michalewski and Ostrovsky, we obtain the following results: (1) Every finite-dimensional analytic space is $\sigma$-homogeneous with analytic witnesse
Externí odkaz:
http://arxiv.org/abs/2403.14378
Let $\mathcal{L}$ be a first-order two-sorted language and consider a class of $\mathcal{L}$-structures of the form $\langle M, X \rangle$ where $M$ varies among structures of the first sort, while $X$ is fixed in the second sort, and it is assumed t
Externí odkaz:
http://arxiv.org/abs/2402.01245
All spaces are assumed to be Tychonoff. Given a realcompact space $X$, we denote by $\mathsf{Exp}(X)$ the smallest infinite cardinal $\kappa$ such that $X$ is homeomorphic to a closed subspace of $\mathbb{R}^\kappa$. Our main result shows that, given
Externí odkaz:
http://arxiv.org/abs/2310.17984
Autor:
Agostini, Claudio, Medini, Andrea
Publikováno v:
In Topology and its Applications 1 October 2024 355
Publikováno v:
In Energy Policy March 2025 198
In the context of generalized descriptive set theory, we systematically compare and analyze various notions of Polish-like spaces and standard $\kappa$-Borel spaces for $\kappa$ an uncountable (regular) cardinal satisfying $\kappa^{<\kappa} = \kappa$
Externí odkaz:
http://arxiv.org/abs/2107.02587
Autor:
Agostini, Claudio, Colla, Eugenio
Recently, Solecki introduced the notion of Ramsey monoid to produce a common generalization to theorems such as Hindman's theorem, Carlson's theorem, and Gowers' FIN$_k$ theorem. He proved that an entire class of finite monoids is Ramsey. Here we imp
Externí odkaz:
http://arxiv.org/abs/2012.02506
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Agostini, Claudio, Somaglia, Jacopo
We present a characterization of spaces of strictly decreasing functions on trees in terms of bisequentiality. This characterization answers Questions 6.1 and 6.2 of "A filter on a collection of finite sets and Eberlein compacta" by T. Cie\'sla. More
Externí odkaz:
http://arxiv.org/abs/1809.01473
Publikováno v:
In Renewable Energy June 2021 171:1097-1114