Zobrazeno 1 - 10
of 74
pro vyhledávání: '"ADRIAN, MOSHE"'
We consider the split special orthogonal group $\mathrm{SO}_{N}$ defined over a $p$-adic field. We determine the structure of any $L$-packet of $\mathrm{SO}_{N}$ containing a simple supercuspidal representation (in the sense of Gross--Reeder). We als
Externí odkaz:
http://arxiv.org/abs/2305.09076
Autor:
Adrian, Moshe, Takeda, Shuichiro
We prove a local converse theorem for $GL_n$ over the archimedean local fields which characterizes an infinitesimal equivalence class of irreducible admissible representations of $GL_n(\mathbb{R})$ or $GL_n(\mathbb{C})$ in terms of twisted local gamm
Externí odkaz:
http://arxiv.org/abs/2303.10000
Autor:
Adrian, Moshe
Let F be a non-archimedean local field of characteristic zero. In this paper we construct examples of supercuspidal representations showing that the bound $[N/2]$ for the local converse theorem of $GL_N(F)$ is sharp, N general, when the residual char
Externí odkaz:
http://arxiv.org/abs/2303.08656
Autor:
Adrian, Moshe, Takeda, Shuichiro
Publikováno v:
In Journal of Algebra 1 September 2024 653:133-155
Autor:
Adrian, Moshe
Let N be the normalizer of a maximal torus T in a split reductive group over F_q, and let w be an involution in the Weyl group N/T. We construct a section of W satisfying the braid relations, such that the image of the lift n of w under the Frobenius
Externí odkaz:
http://arxiv.org/abs/2107.06794
Autor:
Adrian, Moshe
We compute all sections of the finite Weyl group, that satisfy the braid relations, in the case that G is an almost-simple connected reductive group defined over an algebraically closed field. We then demonstrate that this set of sections has an inte
Externí odkaz:
http://arxiv.org/abs/1912.07665
Autor:
Adrian, Moshe, Kaplan, Eyal
Let $\pi$ be a simple supercuspidal representation of the split even special orthogonal group. We compute the Rankin-Selberg $\gamma$-factors for rank 1-twists of $\pi$ by quadratic tamely ramified characters of $F^*$. We then use our results to dete
Externí odkaz:
http://arxiv.org/abs/1905.09172
Autor:
Adrian, Moshe, Kaplan, Eyal
Let $\pi$ be a simple supercuspidal representation of the symplectic group $Sp_{2l}(F)$, over a $p$-adic field $F$. In this work, we explicitly compute the Rankin-Selberg $\gamma$-factor of rank-$1$ twists of $\pi$. We then completely determine the L
Externí odkaz:
http://arxiv.org/abs/1803.08881
Autor:
Adrian, Moshe, Takeda, Shuichiro
In this paper we prove a local converse theorem for GL_n over the archimedean local fields, which characterizes an infinitesimal equivalence class of irreducible admissible representations of GL_n(R) (or GL_n(C)) in terms of twisted L-factors.
C
C
Externí odkaz:
http://arxiv.org/abs/1702.07632
Autor:
Adrian, Moshe
We prove that for any split almost-simple connected reductive group G over a p-adic field F, the Kottwitz homomorphism exhibits a homomorphic section. We then extend this result to certain additional split connected reductive groups.
Comment: Ac
Comment: Ac
Externí odkaz:
http://arxiv.org/abs/1608.03601