Zobrazeno 1 - 2
of 2
pro vyhledávání: '"ADN, ácido desoxirribonucleico"'
Autor:
Laura Alcoba Vega, Raquel Vinuesa Campo, Francisco Jorquera Plaza, Sandra Díez Ruiz, Ester Badia Aranda, Rosa María Saiz Chumillas, Noemí Gómez Manero, Judith Gómez Camarero, Raisa Quiñones Castro
Publikováno v:
Gastroenterologia Y Hepatologia
OBJETIVO: Evaluar el resultado del cribado de hepatitis B y C en pacientes ingresados con COVID-19. PACIENTES Y MÉTODOS: Estudio transversal, prospectivo, realizado en dos hospitales españoles de tercer nivel. Se estudiaron marcadores de hepatitis
Autor:
Perna Chaux, Angelina
Publikováno v:
Aschner, P. (2010). Epidemiología de la diabetes en Colombia. Av. Diabetol., 26, 95–100. http://doi.org/10.1016/S1134-3230(10)62005-4
Atkinson, M. a., Eisenbarth, G. S., & Michels, A. W. (2014). Type 1 diabetes. The Lancet, 383(13), 69–82. http://doi.org/10.1016/S0140-6736(13)60591-7
Avrahami, D., & Kaestner, K. H. (2012). Epigenetic regulation of pancreas development and function. Seminars in Cell & Developmental Biology, 23(6), 693–700. http://doi.org/10.1016/j.semcdb.2012.06.002
Bashir Aamir, U., Badar, N., Mehmood, M. R., Nisar, N., Suleman, R. M., Shaukat, S., … Klimov, A. (2012). Molecular epidemiology of influenza A(H1N1)pdm09 viruses from Pakistan in 2009-2010. PLoS ONE, 7(8). http://doi.org/10.1371/journal.pone.0041866
Bhutani, N., Burns, D. M., & Blau, H. M. (2011). DNA demethylation dynamics. Cell, 146(6), 866–872. http://doi.org/10.1016/j.cell.2011.08.042
Bottiglieri, T., Laundy, M., Crellin, R., Toone, B. K., Carney, M. W. P., Reynolds, E. H., & Hospital, P. (2000). monoamine metabolism in depression, 228–232.
Branco, M. R., Ficz, G., & Reik, W. (2011). Uncovering the role of 5-hydroxymethylcytosine in the epigenome. Nature Reviews Genetics, 13(1), 7–13. http://doi.org/10.1038/nrg3080
Brownlee, M. (2005a). The pathobiology of diabetic complications. Diabetes, 54(June 2005), 1615. http://doi.org/10.2337/diabetes.54.6.1615
Brownlee, M. (2005b). The pathobiology of diabetic complications. Diabetes, 54(June), 1615. http://doi.org/10.2337/diabetes.54.6.1615
Caudill, M. A., Wang, J. C., Melnyk, S., Pogribny, I. P., Jernigan, S., Collins, M. D., … James, S. J. (2001). Biochemical and Molecular Action of Nutrients Intracellular S-Adenosylhomocysteine Concentrations Predict Global DNA Hypomethylation in Tissues of Methyl-Deficient Cystathionine-Synthase Heterozygous Mice 1, (May), 2811–2818.
Ceriello, A. (2008a). La“ memoria metabólica” inducida por la hiperglucemia: el nuevo reto en la prevención de la enfermedad cardiovascular en la diabetes. Rev Esp Cardiol, 8, 12–8. Retrieved from http://www.revespcardiol.org/es/linksolver/ft/id/13119904
Ceriello, A. (2008b). La “memoria metabólica” inducida por la hiperglucemia: el nuevo reto en la prevención de la enfermedad cardiovascular en la diabetes. Revista Española de Cardiología Suplementos, 8, 12C–18C. http://doi.org/10.1016/S1131-3587(08)73550-7
Chatterjee, R., & Vinson, C. (2013). NIH Public Access, 1819(7), 763–770. http://doi.org/10.1016/j.bbagrm.2012.02.014.CpG
Chen, C. C., Wang, K. Y., & Shen, C. K. J. (2013). DNA 5-methylcytosine demethylation activities of the mammalian DNA methyltransferases. Journal of Biological Chemistry, 288(13), 9084–9091. http://doi.org/10.1074/jbc.M112.445585
Chen, Z., & Riggs, A. D. (2011). DNA methylation and demethylation in mammals. The Journal of Biological Chemistry, 286(21), 18347–53. http://doi.org/10.1074/jbc.R110.205286
Cooper, M. E., & El-Osta, A. (2010). Epigenetics: Mechanisms and implications for diabetic complications. Circulation Research, 107, 1403–1413. http://doi.org/10.1161/CIRCRESAHA.110.223552
Denis, H., Ndlovu, M. N., & Fuks, F. (2011). Regulation of mammalian DNA methyltransferases: a route to new mechanisms. EMBO Reports, 12(7), 647–656. http://doi.org/10.1038/embor.2011.110
Dhliwayo, N., Sarras, M. P., Luczkowski, E., Mason, S. M., & Intine, R. V. (2014). Parp inhibition prevents teneleven translocase enzyme activation and hyperglycemia-induced DNA demethylation. Diabetes, 63(9), 3069–3076. http://doi.org/10.2337/db13-1916
Diabetes, N., & Clearinghouse, I. (1993). DCCT and EDIC
Dimitrakoudis, D., Ramlal, T., Rastogi, S., Vranic, M., & Klip, a. (1992). Glycaemia regulates the glucose transporter number in the plasma membrane of rat skeletal muscle. The Biochemical Journal, 284 ( Pt 2, 341–8. Retrieved from http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1132643&tool=pmcentrez&rendertype =abstract
Ding, G.-L., & Huang, H.-F. (2014). Role for Tet in Hyperglycemia-Induced Demethylation: A Novel Mechanism of Diabetic Metabolic Memory. Diabetes, 63(9), 2906–2908. http://doi.org/10.2337/db14-0675
Drzewoski, J., Kasznicki, J., & Trojanowski, Z. (2009). The role of “metabolic memory” in the natural history of diabetes mellitus. Polskie Archiwum Medycyny Wewnętrznej, 119(7-8), 493–500. Retrieved from http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=19776690&retmode=re f&cmd=prlinks\npapers3://publication/uuid/57906FCA-6EB0-4D6B-A6DC-3722E9385AE5
El-Osta, A., Brasacchio, D., Yao, D., Pocai, A., Jones, P. L., Roeder, R. G., … Brownlee, M. (2008). Transient high glucose causes persistent epigenetic changes and altered gene expression during subsequent normoglycemia. The Journal of Experimental Medicine, 205(10), 2409–2417. http://doi.org/10.1084/jem.20081188
Felsenfeld, G. (2014). A brief history of epigenetics. Cold Spring Harbor Perspectives in Biology, 6(1). http://doi.org/10.1101/cshperspect.a018200
Forbes, J. M., & Cooper, M. E. (2013). Mechanisms of diabetic complications, 137–188. http://doi.org/10.1152/physrev.00045.2011
Giacco, F., & Brownlee, M. (2010a). Oxidative stress and diabetic complications. Circulation Research, 107, 1058–1070. http://doi.org/10.1161/CIRCRESAHA.110.223545
Giacco, F., & Brownlee, M. (2010b). Oxidative stress and diabetic complications. Circulation Research, 107(9), 1058–1070. http://doi.org/10.1161/CIRCRESAHA.110.223545
Goldberg, A. D., Allis, C. D., & Bernstein, E. (2007). Epigenetics: A Landscape Takes Shape. Cell, 128(4), 635– 638. http://doi.org/10.1016/j.cell.2007.02.006
He, Y.-F., Li, B.-Z., Li, Z., Liu, P., Wang, Y., Tang, Q., … Xu, G.-L. (2011). Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA. Science (New York, N.Y.), 333(2011), 1303–1307. http://doi.org/10.1126/science.1210944
Heyn, H., Moran, S., Hernando-herraez, I., Sayols, S., Gomez, A., Sandoval, J., … Esteller, M. (2013). DNA methylation contributes to natural human variation, 1–11. http://doi.org/10.1101/gr.154187.112.Freely
Holliday, R. (2006). Epigenetics: A historical overview. Epigenetics, 1(2), 76–80. http://doi.org/10.4161/epi.1.2.2762
Horvath, S. (2013). DNA methylation age of human tissues and cell types. Genome Biol, 14, R115. http://doi.org/10.1186/gb-2013-14-10-r115
Repositorio EdocUR-U. Rosario
Universidad del Rosario
instacron:Universidad del Rosario
Atkinson, M. a., Eisenbarth, G. S., & Michels, A. W. (2014). Type 1 diabetes. The Lancet, 383(13), 69–82. http://doi.org/10.1016/S0140-6736(13)60591-7
Avrahami, D., & Kaestner, K. H. (2012). Epigenetic regulation of pancreas development and function. Seminars in Cell & Developmental Biology, 23(6), 693–700. http://doi.org/10.1016/j.semcdb.2012.06.002
Bashir Aamir, U., Badar, N., Mehmood, M. R., Nisar, N., Suleman, R. M., Shaukat, S., … Klimov, A. (2012). Molecular epidemiology of influenza A(H1N1)pdm09 viruses from Pakistan in 2009-2010. PLoS ONE, 7(8). http://doi.org/10.1371/journal.pone.0041866
Bhutani, N., Burns, D. M., & Blau, H. M. (2011). DNA demethylation dynamics. Cell, 146(6), 866–872. http://doi.org/10.1016/j.cell.2011.08.042
Bottiglieri, T., Laundy, M., Crellin, R., Toone, B. K., Carney, M. W. P., Reynolds, E. H., & Hospital, P. (2000). monoamine metabolism in depression, 228–232.
Branco, M. R., Ficz, G., & Reik, W. (2011). Uncovering the role of 5-hydroxymethylcytosine in the epigenome. Nature Reviews Genetics, 13(1), 7–13. http://doi.org/10.1038/nrg3080
Brownlee, M. (2005a). The pathobiology of diabetic complications. Diabetes, 54(June 2005), 1615. http://doi.org/10.2337/diabetes.54.6.1615
Brownlee, M. (2005b). The pathobiology of diabetic complications. Diabetes, 54(June), 1615. http://doi.org/10.2337/diabetes.54.6.1615
Caudill, M. A., Wang, J. C., Melnyk, S., Pogribny, I. P., Jernigan, S., Collins, M. D., … James, S. J. (2001). Biochemical and Molecular Action of Nutrients Intracellular S-Adenosylhomocysteine Concentrations Predict Global DNA Hypomethylation in Tissues of Methyl-Deficient Cystathionine-Synthase Heterozygous Mice 1, (May), 2811–2818.
Ceriello, A. (2008a). La“ memoria metabólica” inducida por la hiperglucemia: el nuevo reto en la prevención de la enfermedad cardiovascular en la diabetes. Rev Esp Cardiol, 8, 12–8. Retrieved from http://www.revespcardiol.org/es/linksolver/ft/id/13119904
Ceriello, A. (2008b). La “memoria metabólica” inducida por la hiperglucemia: el nuevo reto en la prevención de la enfermedad cardiovascular en la diabetes. Revista Española de Cardiología Suplementos, 8, 12C–18C. http://doi.org/10.1016/S1131-3587(08)73550-7
Chatterjee, R., & Vinson, C. (2013). NIH Public Access, 1819(7), 763–770. http://doi.org/10.1016/j.bbagrm.2012.02.014.CpG
Chen, C. C., Wang, K. Y., & Shen, C. K. J. (2013). DNA 5-methylcytosine demethylation activities of the mammalian DNA methyltransferases. Journal of Biological Chemistry, 288(13), 9084–9091. http://doi.org/10.1074/jbc.M112.445585
Chen, Z., & Riggs, A. D. (2011). DNA methylation and demethylation in mammals. The Journal of Biological Chemistry, 286(21), 18347–53. http://doi.org/10.1074/jbc.R110.205286
Cooper, M. E., & El-Osta, A. (2010). Epigenetics: Mechanisms and implications for diabetic complications. Circulation Research, 107, 1403–1413. http://doi.org/10.1161/CIRCRESAHA.110.223552
Denis, H., Ndlovu, M. N., & Fuks, F. (2011). Regulation of mammalian DNA methyltransferases: a route to new mechanisms. EMBO Reports, 12(7), 647–656. http://doi.org/10.1038/embor.2011.110
Dhliwayo, N., Sarras, M. P., Luczkowski, E., Mason, S. M., & Intine, R. V. (2014). Parp inhibition prevents teneleven translocase enzyme activation and hyperglycemia-induced DNA demethylation. Diabetes, 63(9), 3069–3076. http://doi.org/10.2337/db13-1916
Diabetes, N., & Clearinghouse, I. (1993). DCCT and EDIC
Dimitrakoudis, D., Ramlal, T., Rastogi, S., Vranic, M., & Klip, a. (1992). Glycaemia regulates the glucose transporter number in the plasma membrane of rat skeletal muscle. The Biochemical Journal, 284 ( Pt 2, 341–8. Retrieved from http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1132643&tool=pmcentrez&rendertype =abstract
Ding, G.-L., & Huang, H.-F. (2014). Role for Tet in Hyperglycemia-Induced Demethylation: A Novel Mechanism of Diabetic Metabolic Memory. Diabetes, 63(9), 2906–2908. http://doi.org/10.2337/db14-0675
Drzewoski, J., Kasznicki, J., & Trojanowski, Z. (2009). The role of “metabolic memory” in the natural history of diabetes mellitus. Polskie Archiwum Medycyny Wewnętrznej, 119(7-8), 493–500. Retrieved from http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=19776690&retmode=re f&cmd=prlinks\npapers3://publication/uuid/57906FCA-6EB0-4D6B-A6DC-3722E9385AE5
El-Osta, A., Brasacchio, D., Yao, D., Pocai, A., Jones, P. L., Roeder, R. G., … Brownlee, M. (2008). Transient high glucose causes persistent epigenetic changes and altered gene expression during subsequent normoglycemia. The Journal of Experimental Medicine, 205(10), 2409–2417. http://doi.org/10.1084/jem.20081188
Felsenfeld, G. (2014). A brief history of epigenetics. Cold Spring Harbor Perspectives in Biology, 6(1). http://doi.org/10.1101/cshperspect.a018200
Forbes, J. M., & Cooper, M. E. (2013). Mechanisms of diabetic complications, 137–188. http://doi.org/10.1152/physrev.00045.2011
Giacco, F., & Brownlee, M. (2010a). Oxidative stress and diabetic complications. Circulation Research, 107, 1058–1070. http://doi.org/10.1161/CIRCRESAHA.110.223545
Giacco, F., & Brownlee, M. (2010b). Oxidative stress and diabetic complications. Circulation Research, 107(9), 1058–1070. http://doi.org/10.1161/CIRCRESAHA.110.223545
Goldberg, A. D., Allis, C. D., & Bernstein, E. (2007). Epigenetics: A Landscape Takes Shape. Cell, 128(4), 635– 638. http://doi.org/10.1016/j.cell.2007.02.006
He, Y.-F., Li, B.-Z., Li, Z., Liu, P., Wang, Y., Tang, Q., … Xu, G.-L. (2011). Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA. Science (New York, N.Y.), 333(2011), 1303–1307. http://doi.org/10.1126/science.1210944
Heyn, H., Moran, S., Hernando-herraez, I., Sayols, S., Gomez, A., Sandoval, J., … Esteller, M. (2013). DNA methylation contributes to natural human variation, 1–11. http://doi.org/10.1101/gr.154187.112.Freely
Holliday, R. (2006). Epigenetics: A historical overview. Epigenetics, 1(2), 76–80. http://doi.org/10.4161/epi.1.2.2762
Horvath, S. (2013). DNA methylation age of human tissues and cell types. Genome Biol, 14, R115. http://doi.org/10.1186/gb-2013-14-10-r115
Repositorio EdocUR-U. Rosario
Universidad del Rosario
instacron:Universidad del Rosario
Los cambios epigenéticos son responsables de la aparición de muchas patologías humanas y sus causas son debido a factores ambientales como genéticos. Se ha descrito en enfermedades crónicas como la Diabetes Mellitus tipo 2 (T2DM) que se caracter
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::98c39e1f49bb3d797bf3677153d8b0aa