Zobrazeno 1 - 10
of 54
pro vyhledávání: '"ABYZOV, ADEL"'
We examine those matrix rings whose entries lie in periodic rings equipped with some additional properties. Specifically, we prove that the famous Diesl's question whether or not $R$ being nil-clean implies that $\mathbb{M}_n(R)$ is nil-clean for all
Externí odkaz:
http://arxiv.org/abs/2301.07948
We consider rings whose one-sided ideals are close to automorphism-invariant modules. We study rings in which every (finitely generated) right ideal is automorphism invariant and rings in which every right ideal is a finite direct sum of automorphism
Externí odkaz:
http://arxiv.org/abs/2212.05921
We significantly strengthen results on the structure of matrix rings over finite fields and apply them to describe the structure of the so-called weakly $n$-torsion clean rings. Specifically, we establish that, for any field $F$ with either exactly s
Externí odkaz:
http://arxiv.org/abs/2112.14617
Publikováno v:
Turkish Journal of Mathematics. 2024, Vol. 48 Issue 5, p817-839. 23p.
Autor:
Abyzov, Adel, Maklakov, Alexander
Publikováno v:
In Linear Algebra and Its Applications 15 December 2023 679:220-230
Autor:
Abyzov, Adel, Maklakov, Alexander
Publikováno v:
In Linear Algebra and Its Applications 1 April 2023 662:1-17
The aim of this paper is to study the notions of $\mathcal{A}$-C3 and $\mathcal{A}$-D3 modules for some class $\mathcal{A}$ of right modules. Several characterizations of these modules are provided and used to describe some well-known classes of ring
Externí odkaz:
http://arxiv.org/abs/1609.04052
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Quynh, Truong Cong1 (AUTHOR), Abyzov, Adel2 (AUTHOR), Dan, Phan3 (AUTHOR), Van Thuyet, Le4 (AUTHOR) lvthuyet@hueuni.edu.vn
Publikováno v:
Bulletin of the Iranian Mathematical Society. Oct2021, Vol. 47 Issue 5, p1571-1584. 14p.
Publikováno v:
Communications in Algebra; 2024, Vol. 52 Issue 5, p1832-1852, 21p