Zobrazeno 1 - 10
of 158
pro vyhledávání: '"ABOLARINWA, Abimbola"'
Autor:
Abolarinwa, Abimbola, Anthony, Yisa O
By a systematic development of fundamental concepts of conformable calculus we establish conformable divergence theorem and Green's identities which we combine with some new anisotropic Picone type identities to derive a generalized anisotropic Hardy
Externí odkaz:
http://arxiv.org/abs/2412.00240
In this article we derive gradient estimation for positive solution of the equation \begin{equation*} (\partial_t-\Delta_f)u = A(u)p(x,t) + B(u)q(x,t) + \mathcal{G}(u) \end{equation*} on a weighted Riemannian manifold evolving along the $(k,m)$ super
Externí odkaz:
http://arxiv.org/abs/2404.15705
Autor:
Abolarinwa, Abimbola, Azami, Shahroud
In this paper, we first prove monotonicity of a generalized para bolic frequency on weighted closed Riemannian manifolds for some linear heat equation. Secondly, a certain generalized parabolic frequency functional is defined with respect to the solu
Externí odkaz:
http://arxiv.org/abs/2310.11255
Autor:
Abolarinwa, Abimbola, Azami, Shahroud
This paper is devoted to the investigation of the monotonicity of parabolic frequency functional under conformal Ricci flow defined on a closed Riemannian manifold of constant scalar curvature and dimension not less than 3. Parabolic frequency functi
Externí odkaz:
http://arxiv.org/abs/2310.11208
Autor:
Abolarinwa, Abimbola
In this paper we prove some Hamilton type and Li-Yau type gradient estimates on positive solutions to generalized nonlinear parabolic equations on smooth metric measure space with compact boundary. The geometry of the space in terms of lower bounds o
Externí odkaz:
http://arxiv.org/abs/2309.00763
This article is devoted to the study of several estimations for a positive solution to a nonlinear weighted parabolic equation on a weighted Riemannian manifold. We therefore derive new Li-Yau type and Hamilton type gradient estimates yielding severa
Externí odkaz:
http://arxiv.org/abs/2303.13854
Autor:
Abolarinwa, Abimbola
In this paper, we establish a new generalized nonlinear variable exponent Picone identities for $p(x)$-sub-Laplacian. As applications we prove uniqueness, simplicity, momotonicity and isolatedness of the first nontrivial Dirichlet eigenvalue of $p(x)
Externí odkaz:
http://arxiv.org/abs/2209.05642
This paper is primarily devoted to a class of interpolation inequalities of Hardy and Rellich types on the Heisenberg group $\mathbb{H}^n$. Consequently, several weighted Hardy type, Heisenberg-Pauli-Weyl uncertainty principle and Hardy-Rellich type
Externí odkaz:
http://arxiv.org/abs/2209.04225
Autor:
Abolarinwa, Abimbola, Azami, Shahroud
Publikováno v:
Journal of Applied Analysis, 26, 2020
We study a system of quasilinear eigenvalue problems with Dirichlet boundary conditions on complete compact Riemannian manifolds. In particular, Cheng comparison estimates and inequality of Faber-Krahn for the first eigenvalue of a $(p,q)$-Laplacian
Externí odkaz:
http://arxiv.org/abs/2007.06303
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.