Zobrazeno 1 - 10
of 35
pro vyhledávání: '"A.V. Zagorodnyuk"'
Publikováno v:
Karpatsʹkì Matematičnì Publìkacìï, Vol 13, Iss 3, Pp 727-733 (2021)
We investigate Lipschitz symmetric functions on a Banach space $X$ with a symmetric basis. We consider power symmetric polynomials on $\ell_1$ and show that they are Lipschitz on the unbounded subset consisting of vectors $x\in \ell_1$ such that $|x_
Externí odkaz:
https://doaj.org/article/75290c8eefbc49b6b41e6e1dd8acba6d
Publikováno v:
Karpatsʹkì Matematičnì Publìkacìï, Vol 12, Iss 2, Pp 360-367 (2020)
We consider different approaches to constructing power operations on the ring of multisets associated with supersymmetric polynomials of infinitely many variables. Some relations between constructed power operations are established. Also, we study di
Externí odkaz:
https://doaj.org/article/dedcdb075eb34eda882bdb550e1a44da
Publikováno v:
Karpatsʹkì Matematičnì Publìkacìï, Vol 11, Iss 2, Pp 335-344 (2019)
Let $X$ be a weighted direct sum of infinity many copies of complex spaces $\ell_1\bigoplus \ell_1.$ We consider an algebra consisting of polynomials on $X$ which are supersymmetric on each term $\ell_1\bigoplus \ell_1.$ Point evaluation functionals
Externí odkaz:
https://doaj.org/article/304cf7719c8d40c58126a9f6f6e645e3
Autor:
I.V. Chernega, A.V. Zagorodnyuk
Publikováno v:
Karpatsʹkì Matematičnì Publìkacìï, Vol 11, Iss 1, Pp 42-47 (2019)
Let $\{P_n\}_{n=0}^\infty$ be a sequenceof continuous algebraically independent homogeneous polynomials on a complex Banach space $X.$ We consider the following question: Under which conditions polynomials $\{P_1^{k_1}\cdots P_n^{k_n}\}$ form a Schau
Externí odkaz:
https://doaj.org/article/1dc63cbd316b464db1ab5c1db2b7c5dd
Autor:
V.V. Kravtsiv, A.V. Zagorodnyuk
Publikováno v:
Karpatsʹkì Matematičnì Publìkacìï, Vol 8, Iss 2, Pp 263-271 (2016)
The paper contains a description of symmetric convolution of the algebra of block-symmetric analytic functions of bounded type on $\ell_{1}$-sum of the space $\mathbb{C}^{2}.$ We show that the specrum of such algebra does not coincide of point evalua
Externí odkaz:
https://doaj.org/article/116199ca3d7f4e248bcea587eb003507
Autor:
O.I. Fedak, A.V. Zagorodnyuk
Publikováno v:
Karpatsʹkì Matematičnì Publìkacìï, Vol 7, Iss 2, Pp 254-258 (2015)
In this paper we investigate the boundedness of holomorphic functionals on a Banach space with a normalized basis $\{e_n\}$ which have a very special form $f(x)=f(0)+\sum_{n=1}^\infty c_nx_n^n$ and which we call strictly diagonal. We consider under w
Externí odkaz:
https://doaj.org/article/5ac1dadf59ba4d2abcd0e1cf9079b032
Autor:
N.B. Verkalets, A.V. Zagorodnyuk
Publikováno v:
Journal of Vasyl Stefanyk Precarpathian National University, Vol 2, Iss 4, Pp 105-136 (2015)
A survey of general results about linear subspaces in zeros of polynomials onreal and complex Banach spaces.
Externí odkaz:
https://doaj.org/article/fcc61bdf3ec94850818526aa59d2cf9e
Autor:
O.G. Taras, A.V. Zagorodnyuk
Publikováno v:
Karpatsʹkì Matematičnì Publìkacìï, Vol 6, Iss 2, Pp 372-376 (2014)
We investigate symmetric regularity of sums of symmetric tensor products of Banach spaces and Arens regularity of symmetric tensor products of Banach algebras. An example for the Hilbert space is obtained.
Externí odkaz:
https://doaj.org/article/f12a4d9121d74125aca834280c8c7d4e
Publikováno v:
Karpatsʹkì Matematičnì Publìkacìï, Vol 5, Iss 1, Pp 59-62 (2013)
The paper contains proof of the hypercyclicity of “symmetric translation” on the algebras of block-symmetric analytic functions of bounded type on an isomorphic copy of $l_1$.
Externí odkaz:
https://doaj.org/article/fdc2661bfa3749b4b356b65b618631ee
Autor:
O.V Labachuk, A.V. Zagorodnyuk
Publikováno v:
Karpatsʹkì Matematičnì Publìkacìï, Vol 4, Iss 2, Pp 284-288 (2012)
We consider the multiplicative polynomial mappings on commutative algebras in this work. We call a multiplicative polynomial trivial, if it can be represented as a product of characters. In the paper we investigate the following question: does there
Externí odkaz:
https://doaj.org/article/d079f47515594943bb48df1f052baad7