Zobrazeno 1 - 10
of 29
pro vyhledávání: '"A.R. AMIR-MOÉZ"'
Autor:
A.R. Amir-Moéz, A.L. Fass
This chapter discusses determinants and linear equations. The theory of linear systems is the basis and a fundamental part of linear algebra, a subject that is used in most parts of modern mathematics. Computational algorithms for finding the solutio
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::6b184284ec8eb8c2aea9dcb2823774a5
https://doi.org/10.1016/b978-0-08-009656-8.50007-4
https://doi.org/10.1016/b978-0-08-009656-8.50007-4
Autor:
A.L. Fass, A.R. Amir-Moéz
This chapter discusses the characteristic equation of a transformation and quadratic forms. A quadratic form is a homogeneous polynomial of degree two in a number of variables. Quadratic forms occupy a central place in various branches of mathematics
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::fef069eb1c7db04521a589f09ac8bc1c
https://doi.org/10.1016/b978-0-08-009656-8.50009-8
https://doi.org/10.1016/b978-0-08-009656-8.50009-8
Autor:
A.R. Amir-Moéz, A.L. Fass
This chapter describes linear transformations and matrices. A linear transformation on the space is a method of corresponding to each vector of the space of another vector. The multiplication of transformations is associative; also for transformation
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::bb2ecb2caa18a7570c6ee2b3bb33a6a5
https://doi.org/10.1016/b978-0-08-009656-8.50006-2
https://doi.org/10.1016/b978-0-08-009656-8.50006-2
Autor:
A.L. Fass, A.R. Amir-Moéz
This chapter discusses quadratic forms and application to geometry. The theory of quadratic forms and methods used in their study depend in a large measure on the nature of the coefficients, which might be real or complex numbers, rational numbers, o
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::6288a44cecc20af96840dca06bab7efd
https://doi.org/10.1016/b978-0-08-009656-8.50012-8
https://doi.org/10.1016/b978-0-08-009656-8.50012-8
Autor:
A.R. Amir-Moéz, A.L. Fass
This chapter discusses special transformations and their matrices. Matrices allow arbitrary linear transformations to be represented in a consistent format, suitable for computation. Linear transformations are not the only ones that can be represente
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::4993826f438e0fd0c2be08122a9ed15c
https://doi.org/10.1016/b978-0-08-009656-8.50008-6
https://doi.org/10.1016/b978-0-08-009656-8.50008-6
Autor:
A.R. Amir-Moéz, A.L. Fass
This chapter discusses real Euclidean space. The concept of a Euclidean space encompasses Euclidean plane and the three-dimensional space of Euclidean geometry as spaces of dimensions 2 and 3, respectively. The term Euclidean distinguishes these spac
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::a48cca3591dcab4dea441b3a3d821c26
https://doi.org/10.1016/b978-0-08-009656-8.50005-0
https://doi.org/10.1016/b978-0-08-009656-8.50005-0
Autor:
A.L. Fass, A.R. Amir-Moéz
This chapter discusses linear transformations, matrices, and determinants. A linear transformation is an important concept in mathematics because many real world phenomena can be approximated by linear models. Unlike a linear function, a linear trans
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::7956f260fe7805d473f65ac35c591b96
https://doi.org/10.1016/b978-0-08-009656-8.50011-6
https://doi.org/10.1016/b978-0-08-009656-8.50011-6
Autor:
A.R. AMIR-MOÉZ, A.L. FASS
Publisher Summary This chapter describes unitary spaces. A coordinate system can be introduced into a Euclidean space, in such a way that, for example, every point or vector in the plane corresponds to a pair of real numbers. Similarly, to every vect
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::f4192c44f4df5c0ad9ac8c23a38f9387
https://doi.org/10.1016/b978-0-08-009656-8.50010-4
https://doi.org/10.1016/b978-0-08-009656-8.50010-4
Autor:
A.L. Fass, A.R. Amir-Moéz
This chapter discusses linear transformations in general vector spaces. A vector space in which a distributive multiplication is defined is called a linear algebra. The ordinary rules for multiplication of polynomials apply to the multiplication of p
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::40f4c6c799bab3ac7aa1cd774843e93b
https://doi.org/10.1016/b978-0-08-009656-8.50015-3
https://doi.org/10.1016/b978-0-08-009656-8.50015-3