Zobrazeno 1 - 10
of 157 111
pro vyhledávání: '"A. WULFF"'
In this paper, we prove a Wulff inequality for $n$-dimensional minimal submanifolds with boundary in $\mathbb{R}^{n+m}$, where we associate a nonnegative anisotropic weight $\Phi: S^{n+m-1}\to \mathbb{R}^{+}$ to the boundary of minimal submanifolds.
Externí odkaz:
http://arxiv.org/abs/2412.19063
Autor:
Inoue, Toshimi
We prove the Hasanis--Koutroufiotis type inequality for the anisotropic extrinsic radius of hypersurfaces in Euclidean space involving the anisotropic mean curvatures. We also study the equality case and proved that an almost extremal hypersurface mu
Externí odkaz:
http://arxiv.org/abs/2412.20500
Autor:
Denborough, David1,2 david.denborough@unimelb.edu.au
Publikováno v:
Qualitative Report. Dec2024, Vol. 29 Issue 12, p1-8. 8p.
A theory of the equilibrium shape of crystal assuming minimal surface free energy was formulated at the beginning of the century by Wulff. Assuming that the anisotropic interfacial free energy (depending on the orientation of the interface with respe
Autor:
DeMason, Kenneth
Quantitative stability for crystalline anisotropic perimeters, with control on the oscillation of the boundary with respect to the corresponding Wulff shape, is proven for $n\geq 3$. This extends a result of [Neu16] in $n=2$.
Comment: 24 pages,
Comment: 24 pages,
Externí odkaz:
http://arxiv.org/abs/2402.06813
Autor:
Ulivelli, Jacopo
We introduce functional Wulff shapes based on the classical construction for compact convex sets. With this new tool, we establish a functional version of Aleksandrov's variational lemma in the family of convex functions with compact domain. The resu
Externí odkaz:
http://arxiv.org/abs/2312.11172
Autor:
Han, Huhe
Let $\gamma: S^n\to \mathbb{R}_+$ be a convex integrand and $\mathcal{W}_\gamma$ be the Wulff shape of $ \gamma$. Apex point naturally arise in non-smooth Wulff shape, in particular, vertex of convex polytope. %Let $P\in S^n$. In this paper, we study
Externí odkaz:
http://arxiv.org/abs/2310.09710
Autor:
Scheuer, Julian, Zhang, Xuwen
Publikováno v:
J. Funct. Anal. 288, no. 3, art. 110715, (2025)
For a function $f$ which foliates a one-sided neighbourhood of a closed hypersurface $M$, we give an estimate of the distance of $M$ to a Wulff shape in terms of the $L^{p}$-norm of the traceless $F$-Hessian of $f$, where $F$ is the support function
Externí odkaz:
http://arxiv.org/abs/2308.15999
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Han, Huhe
For any Wulff shape $\mathcal{W}$, its dual Wulff shape and spherical Wulff shape $\widetilde{\mathcal{W}}$ can be defined naturally. A self-dual Wulff shape is a Wulff shape equaling its dual Wulff shape exactly. In this paper, we show that if a sph
Externí odkaz:
http://arxiv.org/abs/2307.10861