Zobrazeno 1 - 10
of 77
pro vyhledávání: '"A. W. Cheesman"'
Autor:
E. S. Duan, L. Chavez Rodriguez, N. Hemming-Schroeder, B. Wijas, H. Flores-Moreno, A. W. Cheesman, L. A. Cernusak, M. J. Liddell, P. Eggleton, A. E. Zanne, S. D. Allison
Publikováno v:
Biogeosciences, Vol 21, Pp 3321-3338 (2024)
Deadwood is an important yet understudied carbon pool in tropical ecosystems. Deadwood degradation to CO2 through decomposer (microbial, termite) activities is driven by wood moisture and temperature, which are in turn strongly influenced by local cl
Externí odkaz:
https://doaj.org/article/d0527188b9c2488b9146de8805edbcac
Autor:
Y. Ma, X. Yue, S. Sitch, N. Unger, J. Uddling, L. M. Mercado, C. Gong, Z. Feng, H. Yang, H. Zhou, C. Tian, Y. Cao, Y. Lei, A. W. Cheesman, Y. Xu, M. C. Duran Rojas
Publikováno v:
Geoscientific Model Development, Vol 16, Pp 2261-2276 (2023)
A major limitation in modeling global ozone (O3) vegetation damage has long been the reliance on empirical O3 sensitivity parameters derived from a limited number of species and applied at the level of plant functional types (PFTs), which ignore the
Externí odkaz:
https://doaj.org/article/aaa86cd1870347d6bc150175c624992a
Autor:
F. Brown, G. A. Folberth, S. Sitch, S. Bauer, M. Bauters, P. Boeckx, A. W. Cheesman, M. Deushi, I. Dos Santos Vieira, C. Galy-Lacaux, J. Haywood, J. Keeble, L. M. Mercado, F. M. O'Connor, N. Oshima, K. Tsigaridis, H. Verbeeck
Publikováno v:
Atmospheric Chemistry and Physics, Vol 22, Pp 12331-12352 (2022)
Climate change has the potential to increase surface ozone (O3) concentrations, known as the “ozone–climate penalty”, through changes to atmospheric chemistry, transport and dry deposition. In the tropics, the response of surface O3 to changing
Externí odkaz:
https://doaj.org/article/5b46d716e0174dd2ac322fbd596c328b
Publikováno v:
SOIL, Vol 7, Pp 145-159 (2021)
The oxygen isotope composition of atmospheric carbon dioxide (CO2) is intimately linked to large-scale variations in the cycling of CO2 and water across the Earth's surface. Understanding the role the biosphere plays in modifying the oxygen isotope c
Externí odkaz:
https://doaj.org/article/1c88fab22b234ba39f2758f9053228a4
Publikováno v:
Biogeosciences, Vol 11, Iss 23, Pp 6697-6710 (2014)
Phosphorus (P) cycling in freshwater wetlands is dominated by biological mechanisms, yet there has been no comprehensive examination of the forms of biogenic P (i.e., forms derived from biological activity) in wetland soils. We used solution 31P NMR
Externí odkaz:
https://doaj.org/article/2cabf4cca7164df7b5bc34b72aa4d3fb
Autor:
Stephanie Law, Habacuc Flores‐Moreno, Alexander W. Cheesman, Rebecca Clement, Marc Rosenfield, Abbey Yatsko, Lucas A. Cernusak, James W. Dalling, Thomas Canam, Isra Abo Iqsaysa, Elizabeth S. Duan, Steven D. Allison, Paul Eggleton, Amy E. Zanne
Publikováno v:
Journal of Ecology. 111:982-993
Autor:
Flossie Brown, Gerd A. Folberth, Stephen Sitch, Susanne Bauer, Marijin Bauters, Pascal Boeckx, Alexander W. Cheesman, Makoto Deushi, Inês Dos Santos, Corinne Galy-Lacaux, James Haywood, James Keeble, Lina M. Mercado, Fiona M. O'Connor, Naga Oshima, Kostas Tsigaridis, Hans Verbeeck
Publikováno v:
Atmospheric Chemistry and Physics
Atmospheric Chemistry and Physics, 2022, 22, pp.12331-12352. ⟨10.5194/acp-22-12331-2022⟩
eISSN
ATMOSPHERIC CHEMISTRY AND PHYSICS
Atmospheric Chemistry and Physics, 2022, 22, pp.12331-12352. ⟨10.5194/acp-22-12331-2022⟩
eISSN
ATMOSPHERIC CHEMISTRY AND PHYSICS
Climate change has the potential to increase surface ozone (O3) concentrations, known as the “ozone–climate penalty”, through changes to atmospheric chemistry, transport and dry deposition. In the tropics, the response of surface O3 to changing
Fire emissions include the ozone precursor NOx, which is often the limiting precursor in remote locations such as the tropical forests. In fact, interannual variability in tropical fire activity, which depends on meteorology and human activity, is hi
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::7abe5b1175c1cc8da2e3c2119a4a1cc9
https://doi.org/10.5194/egusphere-egu23-15314
https://doi.org/10.5194/egusphere-egu23-15314
Autor:
Stephen Sitch, Alexander W Cheesman, Flossie Brown, Paulo Artaxo, Lucas A Cernusak, Gerd Folberth, Felicity Hayes, Tim Hill, Lina Mercado, Johan Uddling
Tropospheric ozone (O3) reduces plant productivity by entering leaves, generating reactive oxygen species and causing oxidative stress which in turn increases respiration, decreases photosynthesis, plant growth, biomass accumulation, and consequently
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::f22a7d808d067469a73d8fbaef8d9cc2
https://doi.org/10.5194/egusphere-egu23-15707
https://doi.org/10.5194/egusphere-egu23-15707
Autor:
Yimian Ma, Xu Yue, Stephen Sitch, Nadine Unger, Johan Uddling, Lina M. Mercado, Cheng Gong, Zhaozhong Feng, Huiyi Yang, Hao Zhou, Chenguang Tian, Yang Cao, Yadong Lei, Alexander W. Cheesman, Yansen Xu, Maria Carolina Duran Rojas
A major limitation in modeling global ozone (O3) vegetation damage has long been the reliance on empirical O3 sensitivity parameters derived from a limited number of species and applied at the level of plant functional types (PFTs), which ignore the
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::2aff833ff08d9091407b216ddd4d756a
https://gmd.copernicus.org/articles/16/2261/2023/
https://gmd.copernicus.org/articles/16/2261/2023/