Zobrazeno 1 - 10
of 154
pro vyhledávání: '"A. V. Bazhanov"'
Publikováno v:
Nuclear Physics B, Vol 1004, Iss , Pp 116558- (2024)
In this paper we present a new solution of the star-triangle relation having positive Boltzmann weights. The solution defines an exactly solvable two-dimensional Ising-type (edge interaction) model of statistical mechanics where the local “spin var
Externí odkaz:
https://doaj.org/article/1ec1ce0ea5ac47fda0c2a8deffb8913a
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Nuclear Physics B, Vol 986, Iss , Pp 116055- (2023)
We show that the celebrated six-vertex model of statistical mechanics (along with its multistate generalizations) can be reformulated as an Ising-type model with only a two-spin interaction. Such a reformulation unravels remarkable factorization prop
Externí odkaz:
https://doaj.org/article/d6ba0b132f214c938ea9c7ef78984770
Publikováno v:
Journal of High Energy Physics, Vol 2021, Iss 3, Pp 1-47 (2021)
Abstract This work concerns the quantum Lorentzian and Euclidean black hole non-linear sigma models. For the Euclidean black hole sigma model an equilibrium density matrix is proposed, which reproduces the modular invariant partition function from th
Externí odkaz:
https://doaj.org/article/174f0dcbf57b4f708cb5b6d8ffa0046e
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Journal of High Energy Physics, Vol 2019, Iss 8, Pp 1-31 (2019)
Abstract In this note we report the results of our study of a 1D integrable spin chain whose critical behaviour is governed by a CFT possessing a continuous spectrum of scaling dimensions. It is argued that the computation of the density of Bethe sta
Externí odkaz:
https://doaj.org/article/e9e1d1a8a2f64a91ae606991bcb49d6e
Publikováno v:
Nuclear Physics B, Vol 965, Iss , Pp 115337- (2021)
The work contains a detailed study of the scaling limit of a certain critical, integrable inhomogeneous six-vertex model subject to twisted boundary conditions. It is based on a numerical analysis of the Bethe ansatz equations as well as the powerful
Externí odkaz:
https://doaj.org/article/b14d9462553541c49c8ad7d379932758
Publikováno v:
Nuclear Physics B, Vol 934, Iss , Pp 529-556 (2018)
A common approach to the quantization of integrable models starts with the formal substitution of the Yang–Baxter Poisson algebra with its quantum version. However it is difficult to discern the presence of such an algebra for the so-called non-ult
Externí odkaz:
https://doaj.org/article/3a641db8fd22450abdf0dae924453909
Publikováno v:
Nuclear Physics B, Vol 927, Iss , Pp 468-515 (2018)
The Bukhvostov–Lipatov model is an exactly soluble model of two interacting Dirac fermions in 1+1 dimensions. The model describes weakly interacting instantons and anti-instantons in the O(3) non-linear sigma model. In our previous work [arXiv:1607
Externí odkaz:
https://doaj.org/article/3578bedb6b014deba193609a415d7f6d
Publikováno v:
Nuclear Physics B, Vol 926, Iss C, Pp 509-543 (2018)
For every quantized Lie algebra there exists a map from the tensor square of the algebra to itself, which by construction satisfies the set-theoretic Yang–Baxter equation. This map allows one to define an integrable discrete quantum evolution syste
Externí odkaz:
https://doaj.org/article/4de523a1c59d4e0fb27c39f24c651d2f