Zobrazeno 1 - 10
of 658
pro vyhledávání: '"A. Vögtlin"'
Publikováno v:
International Conference on Pattern Recognition - ICPR 2024, pp 152-166. Cham: Springer Nature Switzerland
Classifying scanned documents is a challenging problem that involves image, layout, and text analysis for document understanding. Nevertheless, for certain benchmark datasets, notably RVL-CDIP, the state of the art is closing in to near-perfect perfo
Externí odkaz:
http://arxiv.org/abs/2412.13859
Autor:
Jungo, Michael, Vögtlin, Lars, Fakhari, Atefeh, Wegmann, Nathan, Ingold, Rolf, Fischer, Andreas, Scius-Bertrand, Anna
Publikováno v:
SOICT 2023: The 12th International Symposium on Information and Communication Technology
Handwriting recognition is a key technology for accessing the content of old manuscripts, helping to preserve cultural heritage. Deep learning shows an impressive performance in solving this task. However, to achieve its full potential, it requires a
Externí odkaz:
http://arxiv.org/abs/2312.09037
Deep learning methods have shown strong performance in solving tasks for historical document image analysis. However, despite current libraries and frameworks, programming an experiment or a set of experiments and executing them can be time-consuming
Externí odkaz:
http://arxiv.org/abs/2201.08295
We present a framework to generate synthetic historical documents with precise ground truth using nothing more than a collection of unlabeled historical images. Obtaining large labeled datasets is often the limiting factor to effectively use supervis
Externí odkaz:
http://arxiv.org/abs/2103.08236
Autor:
Crossley, Michael S., Lagos-Kutz, Doris, Davis, Thomas S., Eigenbrode, Sanford D., Hartman, Glen L., Voegtlin, David J., Snyder, William E.
Publikováno v:
Ecological Applications, 2022 Jul 01. 32(5), 1-12.
Externí odkaz:
https://www.jstor.org/stable/27167375
Autor:
Alberti, Michele, Pondenkandath, Vinaychandran, Vögtlin, Lars, Würsch, Marcel, Ingold, Rolf, Liwicki, Marcus
Publikováno v:
6th Swiss Conference on Data Science (SDS), Bern, Switzerland, 2019
The field of deep learning is experiencing a trend towards producing reproducible research. Nevertheless, it is still often a frustrating experience to reproduce scientific results. This is especially true in the machine learning community, where it
Externí odkaz:
http://arxiv.org/abs/1906.04736
Autor:
Alberti, Michele, Vögtlin, Lars, Pondenkandath, Vinaychandran, Seuret, Mathias, Ingold, Rolf, Liwicki, Marcus
Publikováno v:
2019 15th IAPR International Conference on Document Analysis and Recognition (ICDAR), Sydney, Australia
This paper introduces a new way for text-line extraction by integrating deep-learning based pre-classification and state-of-the-art segmentation methods. Text-line extraction in complex handwritten documents poses a significant challenge, even to the
Externí odkaz:
http://arxiv.org/abs/1906.11894
Autor:
Ioannis Magouras, Angelika Schoster, Nathalie Fouché, Vinzenz Gerber, Martin H. Groschup, Ute Ziegler, Raffael Fricker, Christian Griot, Andrea Vögtlin
Publikováno v:
Journal of Veterinary Internal Medicine, Vol 36, Iss 6, Pp 2254-2262 (2022)
Abstract Background Reports on acute tick‐borne encephalitis virus (TBEV) infections with signs of neurologic disease in horses are limited. Objectives To describe the epidemiological, clinical, and laboratory findings of suspected acute TBEV infec
Externí odkaz:
https://doaj.org/article/1c1eecf26add4be78d7cbdb9db1f7657
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.